Adaptations of Offshore Wind Operation and Maintenance Models for Floating Wind

Jade McMorland & Kaiser Saeed

Prof. Maurizio Collu, Dr David McMillan, Dr James Carroll & Dr Andrea Coraddu EERA DeepWind January 2022 jade.mcmorland@strath.ac.uk kaiser.saeed@strath.ac.uk

Contents and Introduction

- PhD students at University of Strathclyde
 - Based in the EEE and NAOME departments
 - Strathclyde Floating Wind Research Group

4

FOWT Modelling influential factors:

- le Metocean conditions Metocean
- ▹ Taxonomy & reliability
- ≽ Transport
- ▹ Site logistics
- 🔈 Cost data
- ▹ Crew availability

Influential factors for FBW and FOW

Additional Requirements for FOW

"traditional" model inputs

6

FOW additional considerations

Port Considerations

- Is distance to shore viable for a T2S strategy. Alternate strategy may be more cost effective
- Available port infrastructure
- Accommodate a specific floater type at a given port
- Port availability and available weather window must coincide

Vessel/Weather

- Vessel limits used to determine available weather windows
- Adopted strategy depends very much on local site conditions
- Capability of vessel such as crane reach and lifting heights.
- Vessel availability and waiting times when required

Existing Adapted Models

	Rinaldi et al. 2020 [3]	ECN [5]
Original Model	Rinaldi et al. 2016 [4]	"ECN O&M Access tool"
focus	Direct comparison between fixed and floating	Creation of baseline scenarios for near- and far-from shore
Key details	 Fixed cheaper than floating Comparison of different tow to shore strategies 	 Motion compensated gangway of SOV utilised for floating- to floating transfer

Engineering and Physical Sciences Research Council

Existing Model Adaptations

				Tow to Shore			
			Included?	Strategy	Components	Towing	Timings
Rinaldi et al.	 Hs Tp U 70%↓ in Hs limit 	CTVSOVtug		 Continuous (single WW) Discontinuous (split WW) 	 8/16 components Same taxonomy as floating 	 30%↓ vessel speed 	 1 hour disconnection & reconnection times
ECN	• Hs • U	• SOV • tug		discontinuous	• Weight >3T	?	?

Literature Standard Values

- General factors
 - Inclusion of Tp
 - Hs altered limits due to motion
- Varying data surrounding tow to shore strategy
 - Tug-boat speed
 - Disconnection/reconnection times

Strathcl

Glasgow

Strathclyde

nergy 🔔 Systems

& Structures CDT

Engineering and Physical Sciences Research Council

ScotWind Case Studies

Engineering and Physical Sciences Research Council

University of edi Strathclyde Strathclyde Energy 🔔 Systems & Structures CDT Glasgow

Scotwind Case Study Methodology

Accessibility is defined as the time based % in which a weather window of the required length is available

Scenarios

Engineering and Physical Sciences Research Council

Results - Graphs

Site	Distance to shore	Scenario	Required Weather Window (hours)	% Accessibility	Average Wait Time (hours)
E2	140 km	1	32	70%	133
		2	104	55%	315
NE8	80 km	1	28	53%	260
		2	86	43%	498
N2	40 km	1	26	41%	203
		2	75	33%	353

Conclusions

- Additional elements need to be added to existing O&M models for FOWT use
- Clear need for consistent and reliable data across the sector for tow to shore operations
- Importance of waiting time
 - Tow to shore operations: Tow-in and Tow-out
 - Two periods of waiting for weather conditions
- Direct link between O&M modelling and project financing
 - Inaccurate modelling leads to unrealistic project projections

Referenced Work

	Engineering and
10	COREwind. "identification of floating-wind-specific O&M requirements and monitoring technologies". 2020
9	Offshore Wind Innovation Hub, "Floating Wind: Cost Modelling of major repair strategies", 2020.
9	C. Cermelli, D. Roddier, and A. Weinstein, "Implementation of a 2MW Floating Wind Turbine Prototype Offshore Portugal," Offshore Technology Conference, 2012.
7	Maienza, C., Avossa, A., Ricciardelli, F., Coiro, D., Troise, G., Georgakis, C.T., 2020. A life cycle cost model for floating offshore wind farms. Applied Energy 266, 114716.
6	Brons-Illing, Christopher. Analysis of operation and maintenance strategies for floating offshore wind farms. MS thesis. University of Stavanger, Norway, 2015.
5	Dewan, Ashish, and Masoud Asgarpour. Reference O & M Concepts for Near and Far Offshore Wind Farms. Petten: ECN, 2016.
4	Rinaldi, G, P R Thies, L Johanning, and R T Walker. 2016. "A Computational Tool for the ProActive Management of Offshore Farms." In 2nd International Conference on Offshore Renewable Energy, Glasgow, UK: ASRANet Ltd, 111-15.
3	Rinaldi, G., P. R. Thies, and L. Johanning. "Improvements in the O&M modelling of floating offshore wind farms." Developments in Renewable Energies Offshore. CRC Press, 2020. 481-487.
2	Seyr, Helene, and Michael Muskulus. "Decision support models for operations and maintenance for offshore wind farms: A review." Applied Sciences 9.2 (2019): 278.
1	I. A. Dinwoodie et. al "Development of a combined operational and strategic decision support model for offshore wind", Energy Procedia, 35, pp. 157-166, (2013).

