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Possibility of new strategies such as
Tow to shore

Why O&M?

oaMm

costs

can
be up to

30% of total
LCOE*[1] '
o
_Harsher conditions and Additional requirements
increased distance means

h ind needed for safety of asset and
weather windows are more personnel
critical

LCOE - Levelised Cost of Energy
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Offshore
Wind O&M
Influential
Factors

FOWT Modelling influential
factors:

)~ Metocean conditions
4~ Taxonomy & reliability
A~ Transport

Ak~ Site logistics

&~ Cost data

A~ Crew availability
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Influential factors for FBW and FOW

2 B X ¢ =

« Hs « CTV « Standardized «+ Crew Cost of
«  Wind speed © S0V failure rates availability energy
« HWV « Suitable for . Part . Cost of
‘Zred s DFIG systems availability repair/
* resources
+ + + + +
« Peak wave period . Tugboats « Substructure < Working Cg;t. of
* Characterize  « Floating crane « Mooring limits additional
motions « Onshore Crane system * F2F transfers Eeoss(iuorglewsew
* working e AHV « Direct drive Workability
limits WTs limits components
* Longer repair
times
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Additional Requirements for FOW

“traditional” model inputs FOW additional considerations
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Port Considerations Vessel/Weather

« Is distance to shore viable for a
T2S strategy. Alternate strategy
may be more cost effective

* Vessel limits used to determine
available weather windows

» Adopted strategy depends very

 Available port infrastructure much on local site conditions

« Accommodate a specific floater
type at a given port

» Capability of vessel such as crane
reach and lifting heights.

» Port availability and available
weather window must coincide

» Vessel availability and waiting
times when required

Splitting weather windows

Increased safety concerns/limits = Additional time for disconnection and transfer
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Existing Adapted Models

Rinaldi et al. 2020 [3]

ECN [5]

Original Model

Rinaldi et al. 2016 [4]

“ECN O&M Access tool”

focus

Direct comparison
between fixed and
floating

Creation of baseline
scenarios for near- and
far-from shore

Key details

* Fixed cheaper than
floating

« Comparison of
different tow to
shore strategies

* Motion compensated
gangway of SOV
utilised for floating-
to floating transfer
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Existing Model Adaptations

DOy S Tow to Shore
B T | — Included? | Strategy Components Towing | Timings
Rinaldiet |+ Hs « CTV « Continuous « 8/16  30%d [+ 1 hour
al. « Tp + SQV (single WW) components vessel disconnection
- U « tug « Discontinuous |+ Same speed & reconnection
« 70% in (split WW) taxonomy times
Hs limit as floating
ECN * Hs « SOV « discontinuous |+ Weight >3T
- U « tug
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Literature Standard Values

12 70
» General factors N=6 . —6r5 N5
* Inclusion of Tp 10 T10
 Hs altered limits due to _
motion 3 E 4
* Varying data surrounding % 6 § " -
tow to shore strategy g = 5
« Tug-boat speed 74 4.14 20
 Disconnection/reconnection 10
times 2 . 1.86 1P
0
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ScotWind Case Studies

______————-—--~
‘ ny
~

'_______ Site: N2
~ Water Depth: ~100m

Distance to shore:~40 km

Site: NE8
Water Depth: ~135m
Distance to shore:~80km

Site: E2
Water Depth: ~110m
Distance to shore:~140km
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Scotwind Case Study Methodology

Length of

Site specific inputs

required
M) Distance :gt;rr:z; ——
o Hnee Wind data “

Model Assumptions \
Weather All
consistent resources
across are always Est.
travel path available downtime
Literature “extreme” values |
Disconnection 4«8 "
and ﬂ"’y -
reconnection gl Average
times wait time
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Weather Window Analysis

WINDOW ACCESS VISUALISATION

Needed Access Window = 2 units

primary window length 2 primary window length 5

I I | " I —

No Access 1 i i i i 2
1 P I L ) M o
I i I I 2
I 1 | |- n
|——’ ] | | >
I I | | [r—

Access 1 1 2 1 21 3 1 4 1 5
L 1 1 L 1 L L 1 1 L L 1
Units of Time
KEY

Access Window —
No Access Window sy

Accessibility is defined as the time based % in which
a weather window of the required length is available
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Scenarios

Speed: 10 knots
Connection: 24 hours

Speed: 1.86 knots
Connection: 63 hours
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Results - Graphs
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E2 NE8 N2
" "best" waiting time m— “worst" waiting time =@ =="best" access «+ @ -+ "worst" access
Site | Distance to shore | Scenario Required Weather Window (hours) % Accessibility Average Wait Time (hours)
1 32 70% 133
E2
140 km 2 104 55% 315
1 28 53% 260
NE8 80 km
2 86 43% 498
1 26 41% 203
N2 40 km
2 75 33% 353




Conclusions

 Additional elements need to be added to existing O&M models
for FOWT use

» Clear need for consistent and reliable data across the sector
for tow to shore operations

 Importance of waiting time
» Tow to shore operations: Tow-in and Tow-out
» Two periods of waiting for weather conditions

* Direct link between O&M modelling and project financing
 Inaccurate modelling leads to unrealistic project projections
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