

Optimisation of a novel hybrid concept for wind-wave energy extraction

Alberto Ghigo, Emilio Faraggiana, Massimo Sirigu, Petracca Ermando, Giovanni Bracco

MOREnergy Lab - Politecnico di Torino C.so Duca degli Abruzzi, 24 10129 TORINO ITALY Email: <u>alberto.ghigo@polito.it</u>

Roadmap

Hybrid Wind & Wave Platform

A hybrid platform is a system capable of exploiting both **wind** and **wave resources**.

The system is usually made of:

- 1 or more wind turbines
- >1 Wave Energy Converters

Among the most used WECs there are:

- Point Absorbers
- Oscillating Water Columns
- Oscillating Wave Energy Converters.

Hybrid Wind & Wave Platform

Main advantages:

- Shared platform, moorings and electrical grid
- Solution that prevents wind and wave variability
- WECs contribute to system stability

Main disadvantages:

Higher Capex and Opex
Lower TRL of WEC devices

Hybrid Wind & Wave Platform

Design phase: the platform

Starting from the design of the semisubmerged **Nautilus** platform, a **preliminary design** of the system was made.

To ensure greater stability, it was decided to add a **counterweight** supported by 4 chains.

Dimension	Value	Units
External Square Length	90	[m]
Internal Square Length	70	[<i>m</i>]
Diameter of columns	6	[<i>m</i>]
Height of columns	28	[m]
Draught	21	[<i>m</i>]
Platform and ballast material (Steel)	7700	$[kg/m^3]$
CoG Coordinates	(0; 0; -40)	[<i>m</i>]
Pendulum ballast mass	6126	[tons]
Total mass	11395	[tons]

Design phase: the RM3 WEC

The **RM3** point absorber design consists of a surface float that oscillates with wave motion relative to a vertical spar buoy connected to a subsurface reaction plate.

The floating platform has been adapted to accommodate a WEC for each of the 4 columns of the structure.

Source: U.S. Department of Energy

Hydrostatic Stability

After dimensioning the system, the static stability was verified, calculating both the **metacentric height** of the platform and the **GZ curve**.

Towards Hydrodynamic Analysis

Hydrostatic Analysis Hydrodynamic Analysis

Numerical Model of a Wind&Wave Platform

Belmullet Case Study

MORELAB

12

Tecno-Economic Analysis

Ipothesis:

- Operational lifetime = **25 years**
- WACC = **8%**
- Wind Farm composed by 2, 10,
 - 25 hybrid systems

	20 MW	100 MW	250 MW	UNITS
CAPEX	116.6	471.8	1124.4	M€
OPEX	1.8	8.7	13.1	M€
AEP	86600	433000	1085000	MWh

Hybrid vs FOWT system

Conclusions

Pre-design of geometry is reliable and scalable for hybrid solution;

The hybrid solution is the best solution both in term of LCOE and in dynamic stability;

Further works

Simulate more triplets and investigate in other profitable sites;
Get more configuration of hybrid integrations

Thank you for attention!

