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Motivation and Background




Far-offshore wind

* Higher average wind
speeds farther offshore

* Operating far-offshore
means storing or using
generated power

* Harsher met-ocean
conditions

* Unknowns: O&M,
Perception, legality
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Technology concepts

* Two concepts: a)

a) Unmoored floating
offshore wind turbine
(UFOWT)

b) Energy ship

* Expressly designed for
far-offshore operation

* Mobile, leads to problem
of weather-routing

* Energy is used for
synthesizing e-fuel or
used directly (i.e DAC)
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Research Questions
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Questions

1. How does each concept (for a given design) perform
at producing power under various environmental

conditions?

2. How do the performance maps compare?
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Modelling Methodology
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Conventions

* I/; - True wind velocity
* IV, — vessel/body velocity

* Vap — Apparent wind
velocity

e TWA —True wind angle

* AW A — Apparent wind
angle
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UFOWT (1)

* 2D waterplane Steady-state model
(X F =0)
— 1 2
* Fg = [E p1A1|Vap| Ctl(B: A) —
Myotor8 Sin(etilt)] [cos(AWA) &, sin(AWA) §] Wind Turbine
* Fp = —nyep2D3F2Kz (Dcos(6) &, sin(6) 9]
* Fgp =— % P2A42 Vb V| Cy2[1X, 0F]

* Power
1 5 Platform/

B = §p1A1VapCp1(B»7\) Sub-structure \ ||

* b= _ZT[nwthDZSfSKqZU)

. C _ Pg+Py,

pnet — P,
. Thrusters
* Note: No accounting for wave forces %
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UFOWT (2)

* Several control variables
* [ - Wind turbine blade pitch
* A—Wind turbine tip-speed ratio
* O —Thruster yaw angle
* | —Thruster advance ratio

* Choose a new schedule (i.e B(V;))of

c
(B, A) to maximize C—p
t

» Solve for other variables analytically

* Design based on
* |[EA 15 MW reference turbine [2]
* UMaine Volturn platform [3]

* Wageningen B-series, 7 bladed
propeller [4]
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UFOWT (3)
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Energy Ship (1)

* Forces
o Fg = —2p2A;Vy|Vla(l — a)[1%, 0]

. L= %p1A1|VaZp|C1p(y) [sin(AWA) , cos(AWA)]
+ D =2 p1A41|V2|Cap(¥)[— cos(AWA) , sin(AWA)]
. Fp) = (Z + 1_5) Ctint Flettner Rotors
., 1 o
* Faz = —3p2A42Vb|Vb|Ca2(Vb)[1R, 091
* Power Hull
© P, =2p,A,V5a(l — a)?n,
: .
* P, = —§P1A1Va3pcm(Y) Hydro Turbines
Py+P
o Cp,net = gplp
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Energy Ship (2)

* Energy Ship Design based on
FARWIND design [5]
e 4x 35m tall Flettner rotors
* 80m long catamaran hull
e 2x 4m diameter water turbines

* Flettner rotor performance
from empirical formulas [6]

* Use optimizer to choose
control variables (y, a, V)
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Results and Discussion
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Model Verification
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UFOWT Performance
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UFOWT Control

* Changing the C), and the
Cy map improves power
performance for many
cases

* However, better to use an
optimization to find the
best operating points
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Energy Ship performance
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Comparison
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Comparison

* UFOWTs may perform

better at very high wind
speeds, but worse at
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Conclusion
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Conclusions

* Developed models of two far-offshore wind energy systems

* These models can serve as the basis for further
investigations

* More robust comparison is required, this requires design
optimization and routing optimization

* Biggest differences are in optimal operating speeds. UFOWTs
move slowly, energy ships move quickly
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Future work

* Use the model for Design optimization and Optimization of
control/operation

e Capital Cost estimates
* Routing - LCOE

» Account for other losses (i.e conversion efficiency, loading/unloading
time, etc.)

* Dynamics
* Wind shear difference
e UFOWT hull design choices
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Questions

Contact:
Patrick Connolly
Email: pconnolly@uvic.ca

Uni\{ersi'gy Institute for Integrated
/ of Victoria | Energy Systems




Extra slides

University | Institute for Integrated
j of Victoria | Energy Systems

26



