

Development of an uncertainty model for ship-based lidar measurements

Hugo Rubio, Julia Gottschall 2022-01-19

EERA DeepWind Conference 2022

© 2022 Fraunhofer IWES

Presentation Outline

• • • •

1

Introduction and motivation

Page 3 - 4

• Offshore wind characterization and ship-based lidar technology

2

Materials and Methods Page 5 - 10

• Methodology stages

- From lidar measurements to wind speed
- Ship motion effects
- Derivation of uncertainties

Assumptions

3

Results

Page 11 - 13

- Misalignment
- Velocity ratioPitch and roll

4

Outline

Page 14 - 15

- Conclusion
- References

Introduction and Motivation

Offshore wind characterization

- Offshore sites offer advantageous wind resources compared to onshore:
 - Higher mean wind speeds
 - -< More stationary
- -< Scarce offshore measurements \rightarrow ship-based lidar technology

Reduction of cost and complexity of offshore meas. campaigns

Characterization of winds along vast regions

Not limited to shallow waters

Introduction and Motivation

Ship-based lidar technology

-< Lack of reference data to compare with. Two main questions arise:

- -< How accurate are these measurements?
- What is the best configuration for ship-based lidars?

- These questions are addressed in this study by developing an analytical uncertainty
 model (error propagation method [1]):
 - Not requires comparable/reference data
 - -< Allow the consideration and combination of the relevant parameters

Methodology summary

From lidar measurements to wind speed

-< The calculation of the radial wind speed calculated as:

$$v_{radial} = \vec{r} \cdot \vec{u}_{wind} = \begin{pmatrix} \sin(\theta) \cos(\phi) \\ \sin(\theta) \sin(\phi) \\ \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

$$u = V_h \cos(\Theta)$$
 $v = V_h \sin(\Theta)$

- With:

- $\prec V_h$ as the horizontal **wind speed**
- $\prec \Theta$ as the **wind direction** (from which the wind originates)

Consideration of the ship motions

The retrieved radial velocity is affected by the tilting, rotation and translation of the ship:

$$v_{radial}^{meas} = R_{rot} \cdot \vec{r} \cdot \vec{u}_{wind} + R_{rot} \cdot \vec{r} \cdot \vec{u}_{ship}$$
Wind Ship translation contribution
$$\bar{u}_{ship} = \begin{pmatrix} sog^{1} * \cos(cog^{2}) \\ sog * \sin(cog) \\ heave \end{pmatrix}$$

¹Speed over ground ²Course over ground

© 2022 Fraunhofer IWES

Figure: ship's 6 degrees of freedom

Radial velocity uncertainty

-< For simplification, a separation of the tilting and rotation motions has been done:

- \prec Consideration of ship rotation $\rightarrow R_{rot} = R_{yaw}$
- \prec Consideration of ship tilting $\rightarrow R_{rot} = R_{roll}R_{pitch}$

Applying the law of the uncertainty propagation for each case, we obtain the radial velocities uncertainties:

$$U_{v_{radial}}^{2} = \left(U_{\gamma} \frac{\partial v_{radial}^{meas}}{\partial \gamma}\right)^{2} + \left(U_{cog} \frac{\partial v_{radial}^{meas}}{\partial cog}\right)^{2} + \left(U_{sog} \frac{\partial v_{radial}^{meas}}{\partial sog}\right)^{2}$$
$$U_{v_{radial}}^{2} = \left(U_{\beta} \frac{\partial v_{los,i}}{\partial \beta}\right)^{2} + \left(U_{\delta} \frac{\partial v_{los,i}}{\partial \delta}\right)^{2} + \left(U_{cog} \frac{\partial v_{los,i}}{\partial cog}\right)^{2} + \left(U_{sog} \frac{\partial v_{los,i}}{\partial sog}\right)^{2}$$

Horizontal wind speed uncertainty

- Using a DBS algorithm, the horizontal wind speed components measured by the lidars can be calculated as:

$$u_{meas} = \frac{v_{los,N}^{meas} - v_{los,S}^{meas}}{2\sin(\theta)} \qquad v_{meas} = \frac{v_{los,E}^{meas} - v_{los,W}^{meas}}{2\sin(\theta)}$$

-< And by considering the ship motions effects:

$$\bar{u}_{wind} = R_{rot} \cdot \bar{u}_{meas} + \bar{u}_{ship}$$
$$V_h = \sqrt{u_{wind}^2 + v_{wind}^2}$$

-< The horizontal wind speed will be then:</p>

-< Applying the error propagation:

$$U_{V_h}^2 = \sum_{i=0}^n \left(U_{v_{radial,i}^{meas}} \frac{\partial V_h}{\partial v_{radial,i}^{meas}} \right)^2$$

Where n is the number of lidar beams

Model assumptions

- -< Vertical wind speed component is small, so it is omitted in the model derivation
- -< Time scales of motion and orientation changes are longer than the reference time scale
- -< No shear impact considered

Results

Effect of lidar north misalignment

Parameterization	
V _h	5 m/s
Θ	[0°-360°]
sog	2 m/s
cog	[0°-360°]
γ	[0°-360°]
θ	28°

- Maximum uncertainty at ± 45°
- → The overall average uncertainty (red line) is the same for $\theta = [0^\circ 90^\circ]$

16 18

195° 4

225°

240°

255°

270°

© 2022 Fraunhofer IWES

0.30

Vh uncertainty [m/s] 500 Vh uncertainty

0.24

330°

Figure: V_h uncertainty different values of sog and V_h . Red, black and blue lines indicate vel. ratios of 2, 1 and 0.5 respectively

Results

Effect of pitch and roll

Figure: V_h uncertainty for different pitch and roll values

Figure: V_h uncertainty for different cone angles

Conclusions

-< The effect of lidar north misalignment is small, but maximum when the offset is \pm 45°

- Increasing the number of lidar beams could help to minimize this effect
- Uncertainty is very high for low horizontal wind speed values
- Increasing the ship velocity with regards to the wind speed considerably increases the uncertainty of the measurements
- Tilting effects slightly affect the wind speed uncertainty. However, smaller pitch and roll
 values show higher uncertainty levels

Conclusions

 \prec The effect of lidar north misalignment is small, but maximum when the offset is ± 45°

- Increasing the number of lidar beams could help to minimize this effect
- Uncertainty is very high for low horizontal wind speed values
- Increasing the ship velocity with regards to the wind speed considerably increases the uncertainty of the measurements
- Tilting effects slightly affect the wind speed uncertainty. However, smaller pitch and roll values show higher uncertainty levels
- Further work:
 - -< Consideration of different lidar technologies and correction methods
 - Include other potentially relevant parameters: heave, shear...
 - Validation of model with real observational data

References

[1] Joint Committee for Guides in Metrology: Evaluation of measurement data — Guide to the expression of uncertainty in measurement

Acknowledgements

The project LIKE Lidar Knowledge Europe H2020-MSCA-ITN-2018, Grant no. 858358 is funded by the European Union

Thank you for your attention!

hugo.rubio@iwes.fraunhofer.de

