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Why optimize TLPWTs?

• Promising concept for restricted seabed regions

• Underexplored areas of design space
• How do designs diverge from O/G TLPs?

• Technically interesting problem
• Multiple submerged members
• Significant non-rigid modes

GE/Glosten 12MW Pelastar TLPWT Design
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• Several applications of genetic algorithms
• Robust methods applied to several concepts
• Typically optimizing for cost/nacelle motions

• Gradient-free methods limit scope of studies
• Typically limited to ~10 design variables
• Fylling and Berthelsen showed use of gradient-

based methods (GBM) for simple spar
• Finite-difference gradients limited accuracy

• Hegseth used GBM to optimize with 80 variables
• Combined spar/tower bending responses
• Vectorized design variables, scantling design
• 30 environmental conditions considered

Previous FWT Optimization
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Fylling and Berthelsen, 2011 Hegseth et al., 2020

Karimi et al., 2017

Why 
Optimize?
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Model Development - TLPOpt

• Linearized aero-hydro-servo-elastic model
• Equation of motion constructed in state-space
• Vectorized inputs describe column/tower

• Hydrodynamics: MOJS for pontoons, MacCamy-Fuchs for column

• Structure: Euler beams, generalized coordinates

• Moorings: Linear springs, neutral buoyancy

• Aero: Quasi-steady BEM theory

• Controls: Variable-speed, variable blade-pitch

Linear model of TLPWT
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Model
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Model Development - TLPOpt
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Read input 
values

Construct FE 
model based on 

inputs

Solve for 
modeshapes

Calculate 
viscous loads

Calculate modal 
responses

Post-process for 
responses of 

interest

Evaluate all 
objectives and 

constraints

Develop modal 
equation of 

motion 
(once per design)Optimization 

algorithm 
provides new 

inputs

Repeat for all 
environmental

conditions

Initial Inputs

Model
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• Wave loads from combination of: 
• MacCamy-Fuchs for central, surface-piercing column
• MOJS for horizontal, submerged pontoons
• Can be applied to generic modeshapes

• Much faster than potential flow, similar results
• Analytical gradients can be defined for each theory
• Flexibility for several cross-sections/layouts

• Constant added mass calculation using strip theory

Hydrodynamic Modeling
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Model

Hydrodynamic forcing of TLPWT
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Fully Flexible Model
• Rigid-body motions can not capture full response

• FWTs experience significant bending

• Consider the first three modes in X-Z plane
• Expandable beyond three modes
• Applicable for other floating structures

• Finite element model used to find modes
• Only computed once per design

• Spatial derivatives of modeshapes calculated
• Used to develop modal equation of motion
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First 3 modes of 10MW TLPWT Design Modeshape 3 derivatives

Model
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Verification Techniques
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Sizing Details from 
TLPOpt Inputs

Construct FE model 
(RIFLEX and SIMO bodies)

Time-domain 
Simulations

Post-process to 
Frequency-domain

Modeshapes from          
TLPOpt FE Model

Rigid .gdf file and     
custom newmodes.f

WAMIT potential flow 
solution with     

generalized modes

Frequency-domain forcing, 
added mass, responses

SIMAWAMIT

Verification
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Verification of Modal Forcing
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Verification
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Verification of Added Mass

11

• Solving the 3D radiation 
problem is not feasible 
in the optimization loop

• Good agreement in 
Mode 1 and Mode 2

• Mode 3 shows             
poor agreement 

• Highest curvature 
mode shape

• Lack of rotation in 
WAMIT generalized 
modes

Verification

WAMIT

TLPOpt

Modal Representation
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Verification of Spectral Results

• Spectral results allow comparison
• Using ‘derived’ metrics of response:

• Bending moments, nacelle 
motion/acceleration, tendon tension

• Standard deviations are used in stochastic 
calculations of fatigue and extremes

• Initial results show promising agreement
• May need more than three modes in analysis
• Possible issues in forcing calculation

Verification
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Design Space Exploration
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• Model can also be used to explore design space
• Observe high-level trends, guide initial designs
• Can be used like a gradient-free model by restricting design variables

• Analysis remains valid over a range of TLP designs

• Three example contour plots shown
• Results follow physical intuition
• All combinations of two inputs and 

one output are possible

• Full optimization will follow

Ongoing
Work
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