

Felix Jakob Fliegner System of the Future - 50Hertz

Offshore grid topology optimisation with a geographical information system – Case of the Baltic Sea –

Picture: Kriegers Flak Combined Grid Solution Worlds first Hybrid Interconnector between DK and DE *Picture: 50Hertz*

Setting the Scene

The future is offshore

Setting the Scene

The future is offshore

The challenge ahead

How to integrate offshore wind optimally while using synergies with interconnectors?

 $= \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1$

3

Operational 2020 (DC)

Carthography: Elia Group/ Felix Jakob Fliegner (2020) Data: ENTSO-E grid map (2019); Natural Earth (2019)

Setting the Scene

The future is offshore

The challenge ahead

How to integrate offshore wind optimally while using synergies with interconnectors?

Contribution

Demonstrate coupling of GIS analysis with market modelling to facilitate the analysis.

- Operational 2020
- Operational 2020 (DC)
- Assumed 2040 (TYNDP)
- Carthography: Elia Group/ Felix Jakob Fliegner (2020) Data: ENTSO-E grid map (2019); Natural Earth (2019)

Content

1. The core problem

- Bundling of transmission paths
- Rationale for graph topology setup

2. Framework development

- Clustering of wind farms in QGIS
- Assumptions + Market Model in Julia

3. Illustration of results

- Base Case topology
- Sensitivity Analysis

4. Concluding remarks

- Contribution & Limits of the proposed framework
- Rescope & Further Research

The core problem Framework development Results Discussion

The core problem

F. Fliegner, 50Hertz 7 DeepWind2022

Hybrid assets are the enablers for the future offshore grid

Offshore Grid & GIS F. Fliegner, 50Hertz 8 DeepWind2022

Source: OffshoreGrid 2011, Baltic InteGrid 2019, PROMOTiON project 2015-2020

Centre of analysis is the combinatorial analysis of offshore transmission assets

The optimiser requires a topology to perform the analysis

The concept of permissive and active graph elements is the core element of the capacity expansion problem

Activation problem requires two discrete variables per link and three per node

Offshore Grid & GIS F. Fliegner, 50Hertz | 12 DeepWind2022

Setting the Scene Framework development Results Discussion

GIS analysis is the missing link in data pre-processing and post processing

The optimisation problem is divided in three steps. It is structured in QGIS and solved in Julia

Twin-part division of the initial optimisation problem

A Geographic Information System (GIS) handles import, management, analysis and presentation of spatial information (geo data)

- Where and When is something?
- What and How much of it is nearby?
- How can features be **classified**?
- Which locations service a region optimally?
- Which optimal path links them?

Offshore Grid & GIS F. Fliegner, 50Hertz | 17 DeepWind2022

Geo data is organised in layers

Geometric clustering observes the set of all wind farms and identifies heaps

Methodology

Wind farm clustering

F. Fliegner, 50Hertz 19 DeepWind2022

Methodology

Link creation

F. Fliegner, 50Hertz 20 DeepWind2022

21

Overlay of hub-spoke links, chains and radial connections to shore creates the permissive topology

GIS link creation reduces complexity by factor 10

Offshore Grid & GIS F. Fliegner, 50Hertz 22 DeepWind2022

MILP performs integrated economic dispatch and investment optimisation

Input data retrieved from TYNDP with modifications

Start grid, generation capacities and fuel prices based on TYNDP NT 2040

25 DeepWind2022

Modelling is done in three steps to reduce computational complexity

Setting the Scene Framework development Results Discussion

Observations

- All wind farms connected
- Connections undersized
- Connections asymmetrically
- high concentration of infeed
- Strong bundling of paths
- High link utilisation
- North-South power flows
- Detours around congestions

Offshore Grid & GIS F. Fliegner, 50Hertz 29 DeepWind2022

Under the given assumptions the Baltic Offshore grid describes a bundled backbone with several hybrid assets routed across it

- Almost all wind farms either part of a chain or clustered in a hub
- Connecting links to wind farms are undersized
- Clustering and chaining of wind farms leads to high concentration of grid-infeed

- Strong interconnection North to South & East to West
- Asymmetrical capacity rating: stronger towards high demand side
- **Detours** around congested onshore substations
- Mean flow from north-east to south-west
- Reverse flows signal storage charging in Nordics
- Bundling of transmission tasks into paths maximises link utilisation
- Maximised wind power evacuation opportunities without redundant capacities

Offshore Grid & GIS F. Fliegner, 50Hertz 31 DeepWind2022

Sensitivity analysis investigates impact of three constraints onto resulting topology and dispatch

The framework is impacted most by wind farm assumptions, onshore grid aggregation and preset links

No link preset

Chaining and clustering of wind farms unchanged, curtailment increased

Exchange capacities still realised but more bundled with other links

Wind farms national radial

Strong onshore grid

- Lost wind farm infeed (high curtailment & not connected at all)
- Highly redundant links: increased cable length
- Interconnectors enforced
- Most centralised topology with even more wind farm clustering
- Shortest cable lengths & highest power ratings (up to 8 GW)
- PL, LV, LT, EE integrate more wind energy themselves
- **OBS!** Onshore grid expansion is "for free" in the model

Offshore Grid & GIS F. Fliegner, 50Hertz 33 DeepWind2022

The framework is impacted most by wind farm assumptions, onshore grid aggregation and preset links

Setting the Scene Framework development Results Discussion

The proposed framework creates a wide range of storylines for the future offshore grid to be investigated

- Endogenized identification of offshore transmission paths
- Pre-Solve with GIS analysis
- Twin part optimisation

- Fixed wind farms
- Routing bias
- One shot optimisation for 2040

Further Research

- Onshore grid co-optimisation
- Technical interoperability
- Economic feasibility

Offshore Grid & GIS F. Fliegner, 50Hertz 36 DeepWind2022

How to integrate offshore wind optimally while using synergies with interconnectors?

- Critical inputs: Wind farms, onshore substations, onshore grid, time scope
- Partially discrete decisions, computationally complex to solve
- GIS analysis: **MiniMax clustering** and permissive elements creation (topology)
- MILP: Dispatch-Investment Trade-Off: activate links where optimal
- Results: **bundling is efficient**, hybrid assets realised in AC and DC
- Sensitivity: preset links change topology, clustering is beneficial over "all radial", simplified onshore grid impacts onshore grid the most
- Cross border synergies: Analysing the offshore grid of the future is a quest of pan-European scale.

Offshore Grid & GIS F. Fliegner, 50Hertz | 37 DeepWind2022

Felix Jakob Fliegner System of the Future - 50Hertz

Interested in further discussion?

Contact: <u>FelixJakob.Fliegner@50hertz.com</u> <u>https://de.linkedin.com/in/fliegner</u>

Picture: Kriegers Flak Combined Grid Solution Worlds first Hybrid Interconnector between DK and DE *Picture: 50Hertz*