DTTNU | Norwegian University of Science and Technology

A reduced order model strategy for the efficient approximation of turbulent flow around wind-turbine blades.

Vasileios Tsiolakis^a, Trond Kvamsdal^{a,b}, Adil Rasheed^{a,b}, Eivind Fonn^b, Harald van Brummelen^c ^aNorwegian University of Science and Technology ^bSINTEF Digital ^cEindhoven University of Technology

EERA Deepwind 19-21 Jan 2022, Trondheim, Norway

Model Reduction for Wind-Turbines

- Optimisation of design and operation of wind-turbines/farms
 - Increased complexity:
 - Accuracy and robustness.
 - Coupled problems.
 - Large number of design variations.
 - Multiple scenarios.
 - Real-time decision-making.

Reduced Order Modelling

- Efficient
- Accurate
- Inputs are simple parameters of the light-weight model

Hybrid POD-Galerkin Strategy

Turbulent flow around an aerofoil

Reynolds number	320 000	640 000	960 000
Max error velocity	2.7 %	2.7 %	2.8 %
Avg error velocity	2 %	2.1 %	2 %

Conclusion

- A hybrid methodology that creates more dissipative Reduced Order Models, accounting for turbulent effects.
- > Applicable to industrially-relevant Reynolds numbers.
- Significant speed-up achieved over the full-order problem (10⁴), while retaining the expected accuracy.
- 1. V. T., T. K., A. R., E. F., H.v B., Reduced order models for finite-volume simulations of turbulent flow around wind-turbine blades. *Journal of Physics Conference Series*, 2021.
- 2. V. T., T. K., A. R., E. F., H.v B., A hybrid POD approach for the solution of transient turbulent flow problems. *Computer Methods in Applied Mechanical Engineering*, to be submitted.

Acknowledgements

The authors acknowledge the financial support from the Research Council of Norway and the industrial partners of the projects *OPWIND: Operational control for wind power plants* (project no. 268044) and *CONWIND: Research on smart operation control technologies for offshore wind farms* (project no. 304229).

NTNU | Norwegian University of Science and Technology