Optimization with probabilistic constraints of complex systems Application to the design of an offshore wind turbine

<u>Alexis Cousin</u>^{1,2}, Josselin Garnier², Miguel Munoz Zuniga¹, Martin Guiton¹

¹ IFP Énergies Nouvelles ² CMAP, École Polytechnique

19-21 January 2022

Minimize the cost of the mooring system of a floating offshore wind turbine (FOWT) [1].

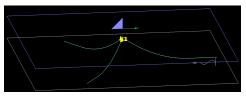


Figure: Mooring system of a FOWT

- Constraints on the surge, the tension in the mooring lines and the accumulated damage (fatigue).
- Uncertainties on model parameters: random vector X_p.
- Sea elevation: time-dependent stochastic process $\eta(t)$.

^[1] Jonkman et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory, 2009

Minimize the cost of the mooring system of a floating offshore wind turbine (FOWT) [1].

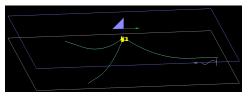


Figure: Mooring system of a FOWT

- Constraints on the surge, the tension in the mooring lines and the accumulated damage (fatigue).
- Uncertainties on model parameters: random vector X_p.
- Sea elevation: time-dependent stochastic process $\eta(t)$.

^[1] Jonkman et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory, 2009

Minimize the cost of the mooring system of a floating offshore wind turbine (FOWT) [1].

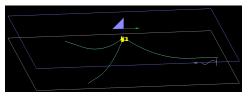


Figure: Mooring system of a FOWT

- Constraints on the surge, the tension in the mooring lines and the accumulated damage (fatigue).
- Uncertainties on model parameters: random vector X_p.
- Sea elevation: time-dependent stochastic process $\eta(t)$.

^[1] Jonkman et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory, 2009

Minimize the cost of the mooring system of a floating offshore wind turbine (FOWT) [1].

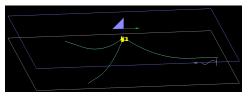


Figure: Mooring system of a FOWT

- Constraints on the surge, the tension in the mooring lines and the accumulated damage (fatigue).
- Uncertainties on model parameters: random vector X_p.
- Sea elevation: time-dependent stochastic process $\eta(t)$.

^[1] Jonkman et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory, 2009

Mathematical formulation

Time-dependent Reliability-Based Design Optimization:

$$\begin{split} & \min_{d \in \Omega_d} \quad \cosh(d) \quad \text{such that} \\ & \mathbb{P}_{X_p,\eta} \left(\max_{[0,T]} \mathcal{S}\left(d, X_p; t\right) > \mathcal{S}_{\max} \right) \\ & \mathbb{P}_{X_p,\eta} \left(\min_{[0,T]} \mathcal{T}^l\left(d, X_p; t\right) < 0 \right) \\ & \mathbb{P}_{X_p,X_R,\eta} \left(\int_0^T \mathcal{D}^l\left(d, X_p; t\right) dt > X_R \right) \\ & < 10^{-4} \quad , l = 1, 2, 3 \end{split}$$

with T = 1 year.

Difficulty

Estimation of the failure probabilities at each iteration of the optimization algorithm: one realization of S and T^l require one expensive simulation.

Mathematical formulation

Time-dependent Reliability-Based Design Optimization:

$$\begin{split} & \min_{d \in \Omega_d} \quad \cosh(d) \quad \text{such that} \\ & \mathbb{P}_{X_p,\eta} \left(\max_{[0,T]} \mathcal{S}\left(d, X_p; t\right) > \mathcal{S}_{\max} \right) \\ & \mathbb{P}_{X_p,\eta} \left(\min_{[0,T]} \mathcal{T}^l\left(d, X_p; t\right) < 0 \right) \\ & \mathbb{P}_{X_p,X_R,\eta} \left(\int_0^T \mathcal{D}^l\left(d, X_p; t\right) dt > X_R \right) \\ & < 10^{-4} \quad , l = 1, 2, 3 \end{split}$$

with T = 1 year.

Difficulty

Estimation of the failure probabilities at each iteration of the optimization algorithm: one realization of S and T^l require one expensive simulation.

Reformulation of the extreme and integral based constraints

Linear equation of motion $+ \eta(t)$ piece-wise stationary Gaussian $\Rightarrow S$ and T^{l} are piece-wise stationary Gaussian processes.

Extreme-based constraints: Extreme Value Theory

$$\mathbb{E}_{X_p} \left[\mathbb{P}_{\eta} \left(\max_{[0,T]} \mathcal{S} \left(d, X_p; t \right) > \mathcal{S}_{\max} \right) \right]$$
$$\mathbb{E}_{X_p} \left[\mathbb{P}_{\eta} \left(\min_{[0,T]} \mathcal{T}^l \left(d, X_p; t \right) < 0 \right) \right] \quad , \ l = 1, 2, 3$$

Integral-based constraints: Ergodic theory + Dirlik [2] method

$$\mathbb{E}_{X_p,X_R}\left[\mathbb{P}_{\eta}\left(\int_0^T \mathcal{D}^l\left(d,X_p;t\right) \mathsf{d}t > X_R\right)\right] \quad , \ l = 1,2,3$$

[2] T. Dirlik. Application of computers in fatigue analysis. PhD thesis, University of Warwick, 1985

Reformulation of the extreme and integral based constraints

Linear equation of motion $+ \eta(t)$ piece-wise stationary Gaussian $\Rightarrow S$ and T^{l} are piece-wise stationary Gaussian processes.

Extreme-based constraints: Extreme Value Theory

$$\mathbb{E}_{X_p} \left[\mathbb{P}_{\eta} \left(\max_{[0,T]} \mathcal{S} \left(d, X_p; t \right) > \mathcal{S}_{\max} \right) \right]$$
$$\mathbb{E}_{X_p} \left[\mathbb{P}_{\eta} \left(\min_{[0,T]} \mathcal{T}^l \left(d, X_p; t \right) < 0 \right) \right] \quad , \ l = 1, 2, 3$$

Integral-based constraints: Ergodic theory + Dirlik [2] method

$$\mathbb{E}_{X_p,X_R}\left[\mathbb{P}_{\eta}\left(\int_0^T \mathcal{D}^l\left(d,X_p;t\right) \mathsf{d}t > X_R\right)\right] \quad , \ l = 1,2,3$$

[2] T. Dirlik. Application of computers in fatigue analysis. PhD thesis, University of Warwick, 1985.

Adaptive Kriging for Expectation Constraints Optimization (AK-ECO)

Problem to solve:

$$\min_{d \in \Omega_d} \cos t(d) \quad \text{such that} \\ \mathbb{E}_{X_p} \left[F\left(\sum_{j=1}^7 M\left(d, X_p, s^j\right)\right) \right] < 10^{-4}$$
 (1)

Overview of AK-ECO

- Create a metamodel of M: Gaussian process regression (kriging)
- Carry out cycles of optimization until convergence of the design point. Each cycle is composed of:
 - \blacksquare a local enrichment of the metamodel of M
 - a resolution of problem (1) (estimating the expectation with Monte Carlo and replacing M with its current metamodel)

Adaptive Kriging for Expectation Constraints Optimization (AK-ECO)

Problem to solve:

$$\min_{d \in \Omega_d} \cos t(d) \quad \text{such that} \\ \mathbb{E}_{X_p} \left[F\left(\sum_{j=1}^7 M\left(d, X_p, s^j\right)\right) \right] < 10^{-4}$$
 (1)

Overview of AK-ECO

- Create a metamodel of M: Gaussian process regression (kriging)
- Carry out cycles of optimization until convergence of the design point. Each cycle is composed of:
 - \blacksquare a local enrichment of the metamodel of M
 - a resolution of problem (1) (estimating the expectation with Monte Carlo and replacing *M* with its current metamodel)

Comparaison of AK-ECO with reference methods in RBDO

d: (added length, mass, position connection).

	K1600	SORA[3]	Stieng[4]	AK-ECO
d^{\min}	(0.86, 108.9, 0)	(2, 141.2, 0)	(2, 140.6, 0)	(0.95, 109.5, 0)
$cost(d^{\min})$	0.282	0.588	0.582	0.287
$p_{\mathcal{S}}(d^{\min})$	1.0×10^{-4}	0	0	0.9×10^{-4}
$p_{\mathcal{T}^l}(d^{\min}), l = 1, 2, 3$	0	0	0	0
$p_{\mathcal{D}^l}(d^{\min}), \ l=1,2$	0	0	0	0
$p_{\mathcal{D}^3}(d^{\min})$	1.0×10^{-4}	0.2×10^{-4}	0.2×10^{-4}	$0.9 imes 10^{-4}$
# code calls	1600	16394	5754	305

AK-ECO finds a reliable optimum with few calls to the expensive code.

[3] Du and Chen, Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design, Journal of Mechanical Design, 2004

[4] Stieng. Optimal design of offshore wind turbine support structures under uncertainty. PhD thesis, Norwegian University of Science and Technology, 2019.

Alexis Cousin | EERA DeepWind 2022 | 19-21 January 2022

Thank you for your attention!

My PhD thesis is available on:

https://tel.archives-ouvertes.fr/tel-03500604/document