Numerical Investigation of the Near Wake Velocity of Floating Wind Turbine Using Free-wake Vortex Model

Luke Jurgen Briffa and Tonio Sant

Department of Mechanical Engineering

Introduction

\circ Motivation

 Lack of literature associated with the near wake characteristics of floating wind turbines under axial and yawed conditions

\circ Research Objective

- To utilise the Free Vortex Wake (FVW) method to investigate the near wake of offshore floating wind turbines under both axial and yawed rotor conditions
 - $\circ~$ Near wake was considered up to twice the rotor diameter (D) downstream
 - \circ Yaw angle (γ) of 30°, floating conditions were limited to sinusoidal surge motion

Method utilized

• Free Vortex Wake (FVW) Method: Wake Induced Dynamic Simulator (WInDS) (UMASS, Sebastian et al, 2012)

<u>Approach</u>

\odot Modelled Wind Turbine

 $\,\circ\,$ NREL 5 MW wind turbine: rotor diameter 126 m and hub height 90 m

\circ Operating Conditions

- 1. Fixed and axial (baseline study)
- 3. Surging and axial

2. Fixed and yawed

- 4. Surging and yawed
- $\circ\,$ To observe the effect of the rotor position, the last three operating conditions were studied under four different blade azimuthal angles ψ = 0°, 90°, 180° and 270°

\circ Parameters

- $\circ~$ Freestream velocity for all conditions acted in the direction perpendicular to an axial rotor
- $\,\circ\,$ Freestream velocity fixed with time, no wind shear
- $\circ~\mbox{Floating case}$ Wave surging frequency equal to frequency of rotor
- $\circ~$ Floating case sinusoidal surge motion prescribed as a function of time

Freestream Velocity $(oldsymbol{U}_{\infty})$ (m/s)	Tip Speed Ratio	Ramsamy- Leishman Constant (a_1)	Wake expanding downstream
11.4	7.55	6.5x10 ⁻⁴	7 D
Sea Wave Parameters			
Wave Amplitude <i>, A</i> (m)		Wave Frequency, f (Hz)	
1.2		0.22	

 \odot Near Wake Analysis

- $\,\circ\,$ Windward velocities (v): the wake component parallel to the freestream velocity
- $\circ\,$ On a horizontal plane, parallel to the ground at rotor hub height (Figure a)
- $\,\circ\,$ Contour plot of the windward velocities on the horizontal plane (Figure b)
- $\circ~$ Windward velocities analysis at:
 - A. 0.5 D
 - B. 1 D
 - C. 2 D
- $\,\circ\,$ Normalised windward velocities (v/U_∞) were calculated and plotted with respect to the radial position
 - $\circ\,$ windward velocity profiles

\circ Percentage Deviation (ε_{v})

 The ratio between the last three operating conditions, independently, to the baseline study with the respective radial position and distance downstream

$$\circ \varepsilon_{v}|_{\text{operating condition}} = \left(\frac{v_{\text{operating condition}} - v_{\text{bsl}}}{v_{\text{bsl}}} \times 100\right)_{x\text{D}}$$

- Positive percentage deviation
 - $\circ~$ windward velocities at the last three operating conditions are faster than the baseline study

b)

<u>Results</u>

\odot Windward Velocity Profiles

- In all the operating conditions the wake centre is at a greater velocity than the free stream velocity in the near wake at 0.5 D downstream. This is partly because the presence of the rotor hub not being modelled.
- For the last three operating conditions the windward velocity profile is effected by the blade azimuthal angle.
- Yawed, surging and combination of both led to asymmetric profiles as one side was slower than the other.
- Yawed conditions tend to lead to disturbed wake centre further downstream in the near wake while shifting the wake away from the wind turbine centre (Figure a).

\circ Percentage Deviation

Greater number of points resulted to have a positive deviation in the near wake at 0.5 D, contrary to what was
observed at 1 D and 2 D (Figures b and c). This shows that near wake flow is in general slower for yawed, surging
and a combination of both conditions than for fixed and axial condition.

