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Motivation and Methodology
• Dataset: Historical data collected at Germany’s first off-shore 

wind farm, Alpha Ventus*.

• Real datasets are characterised by uncertainty. 
⟶ We propose three models for predicting power probability 

distributions, which should be more informative than point estimators. 

⟶ Inputs to the models are the wind speed, turbine type and location 
of upstream neighbours. 

Figure 3: Alpha Ventus
Figure 2: Illustration showing a turbine, 𝑖, 
being downstream of two turbines 𝑗 and 𝑘.

Figure 1: Example showing some of
the uncertainties associated with wind
power prediction.
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* The dataset was made available by the RAVE initiative,
which was funded by the German Federal Ministry of
Economic Affairs and Energy (see: www.rave-offshore.de).



Bayesian Models
• Flipout (Wen et al.) was employed for Bayesian Variational Inference.

• BMLP – A multilayer perceptron formed by stacked DenseFlipout Layers.
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where: 𝑤𝑠𝑡 - Wind Speed, 𝑙 – Turbine type, 𝑑 – Distance, 𝛼 – Angle. 

• BGNN: - A GNN, where the update functions, 𝜙(⋅), are MLPs formed by 
stacked DenseFlipout Layers.

Inputs to the network is a graph tuple, 𝑮 𝒖, 𝑽, 𝑬 :

• 𝒖 – Global feature shared by the graph:  𝒖 = 𝒘𝒔𝒕

• 𝑽 – The node set containing node specific features:  𝒗𝒊 = 𝒍𝒊

• 𝑬 – The edge set containing edge features: 𝒆𝒊𝒋 = [𝒅𝒊𝒋, 𝐬𝐢𝐧 𝜶𝒕
𝒊𝒋

, 𝐜𝐨𝐬 𝜶𝒕
𝒊𝒋

]

Outputs an updated graph tuple, 𝑮(_ , ෡𝑷, _), where individual turbine 
power predictions are embedded in the updated node features.
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(Wen et al.): Wen, Y., Vicol, P., Ba, J., Tran, D. and Grosse, R., Flipout: Efficient pseudo-independent weight perturbations 
on mini-batches. International Conference on Learning Representations, 2018 (https://arxiv.org/abs/1803.04386). 

What is a Graph? 

What is a GNN?  

Figure 4: Graph Representation.

Figure 5: Graph Block in a GNN.



cStackWGAN -
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Conditional Stack Wasserstein Generative Adversarial Network

Figure 6: Proposed cStackWGAN model.

• WGAN – Generator and Discriminator play a minimax two-player game:
min
𝐺

max
𝐷

𝑉 𝐺, 𝐷 = 𝔼𝑥 ~ 𝑝𝑑𝑎𝑡𝑎 𝑥 𝐷 𝑥 ; 𝜃𝐷 − 𝔼𝑧 ~ 𝑝𝑧 𝑧 𝐷 𝐺(𝑧 ; 𝜃𝐺 ; 𝜃𝐷)

• Each Generator and Discriminator are represented by GNNs, with MLPs as update functions.

• Conditioned on the wind speed, turbine type and location of upstream neighbours.
 i.e. same inputs as for the BGNN model. 

• The motivation behind a stacked architecture is to divide a complex task into multiple simpler tasks, 
each solved by individual Discriminator – Generator pairs.

Stage1: 
• G1 – Predicts mean and standard deviation of entire farm power.

• D1_mean – Classify mean samples as real or fake.

• D2_std – Classify standard deviation samples as real or fake.

Stage2: 
• G2 – Predict individual turbine powers, given G1 prediction and condition.

• D2 – Classify individual turbine powers as real or fake.
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Figure 7: MAEs and mean Wasserstein distance against the number of 
closest samples, based on the wind condition, in the test set used to 
estimate the true distributions.

Figure 8: Standard deviation of predicted distributions against MAEs. 

2. A positive correlation between predicted standard deviations and MAEs 
was observed for all models, showing that the models were able to give 
an indication of the associated uncertainties with particular predictions.

3. All models were able to predict the probability distributions for turbine powers 
reasonably well, with the cStackWGAN seeming the best at capturing standard 
deviations and generating more complex distributions.

Figure 9: Predicted (red) and true (blue) distributions for turbines 4 and 10 for two
randomly selected wind conditions. Histograms were scaled in (0, 1), while the powers
for the inputs used to compute the predicted distributions is shown by a single black bin,
with a maximum of 1.5. True distributions were taken as the 20 closest neighbours to the
inputs, determined based on the wind condition, while the predicted were constructed
by sampling 1000 times from the models for the same input condition.

1. Bayesian models performed the best with regards to
MAEs, with the BGNN performing the best. However,
as more points were used to construct the true
distributions, the cStackWGAN performed the best.

Results


