B NTNU | siencan recnoivay

A review of prognostics for offshore
wind turbines

Wanwan Zhang', Jern Vatn', Adil Rasheed?

'Department of Mechanical and Industrial Engineering
2Department of Engineering Cybernetics

EERA DeepWind 2022



1- Paper Selection

Keywords: "wind turbine” AND "remaining useful life"
IEEE Scopus Web of Science
(n=45) (n=125) (n=118) (n=151)
L Y ]

Q1: Read abstracts and remove irrelevant literature

IEEE Scopus Web of Science Springer
(n=6) (n=54) (n=72) (n=10)
| Y J

l Q2: remove duplicated literature
|
Eligibility: - - -

l Q3: Assess full text
Included: Final (n=114)
@ NTNU | Yomeganniversiy of I -




2- Overview of the Literature
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Fig 1. heatmap of key words from Scopus

Remaining useful life (RUL): An estimate of how long the object runs from the current state to the state
where it reaches the failure threshold (Vachtsevanos et al., 2006; Saidi et al., 2021).

Predictive maintenance (PdM): Condition based maintenance carried out following a forecast derived
from repeated analysis or known characteristics and evaluation of the significant parameters of the
degradation of the item (EN 13306, 2009). ] ) .
Prognostics and health management (PHM): a complete industry maintenance and asset management Flg 3. Type of publlcatlons
approach utilizing signals, measurements, models, and algorithms to detect, assess, and track degraded

health, and to predict failure progression (Kalgren et al.,2006; Zonta et al.,2020).
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-Taxonomy of Prognostics models
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4-Opportunities in hybrid modelling
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5-Challenges and Opportunities

Data processing:

Limited failure data: The large amount of run-to-failure data is hard to access in due to the design of long lifetime
and the huge cost of failure. However, the lack of failure data often confines the validation of approaches. Data-
driven approaches relies on the quality and size of data to develop.

Heterogeneous data: SCADA svstem or installed sensor send a large amount of oberation data. such as
environmental data and power data. Preprocessing and fusing the heterogeneous data is the important step before
the data is fed to PdAM models. It is challenge to research and summarize how these data should be selected on
componnts level and svstem level, since it requires multidisciplinary knowledge in physics, signal processing,
statistics and machine learning.

Experimental data: for bearings, shaft, gearbox, experimental data can be available. It is useful to investigate how
to utilize the experimental data to help construct the PdM model.

The development of hybrid model:

For machine learning model, the area of deep learning, ensemble learning, image-based methods can be explored
for predictive maintenance. The combination of different machine learning methods can offset the disadvantages of
different models. It is also possible to research the explainable artificial intelligence methods to increase the
interpretability of machine learning methods.

The dimension reduction methods (PCA, SOM, Isomap) in statistics and machine learning are often used as the
method for feature selection of other models. Statistical model is widely connected with the other three models and
becomes the core. It is an opportunity to develop the connection among simulation model, machine learning model,
physics-based model. There also lacks the accurate definition and classification of physics model. Most of the
physics models are based on fatigue and some are about chemical reaction. The simulation model is rarely applied
and needs specific knowledge to build the system.

There are no standard evaluation metrics of good models. The concepts of good model in machine learning and
other areas are different. A multidisciplinary standard can be proposed to assess the performance of different
models or hybrid models.
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