

Joint optimization of predetermined and condition-based maintenance for offshore wind farms

Håkon Toftaker¹, Espen Flo Bødal¹, Iver Bakken Sperstad¹ Supported by EU project WaterEye DeepWind 2022

¹Sintef Energy Research AS

I

Maintenance planning

- Find the best times to execute a set of maintenance tasks.
 - Predetermined maintenance
 - Condition based maintenance
 - Avoid failure
 - Return de-rated turbine to full production
- Optimize Revenue-costs
- Formulated as a Mixed Integer Linear Program:

$$\max \sum_{t \in \mathcal{T}^{short}} \left[\sum_{i \in \mathcal{W}} \left[\lambda (P_{ti}^0 a_{ti} + (P_{ti} - P_{ti}^0) b_{ti}) - C^f \rho_{ti} (1 - \bar{y}_{ti}) \right] - C^{tr} v_t \right] \\ - \sum_{t \in \mathcal{T}^{long}} \left[C^f \sum_{i \in \mathcal{W}} \rho_{ti} (1 - 0.5 y_{ti} - \bar{y}_{ti}) + \sum_{k \in \mathcal{K}} h_{tk} (\lambda P_{tk}^{loss} + \frac{C^{tr}}{\tau^x + \tau^y + \tau^z}) \right]$$

Example of maintenance schedule

Short term daily schedule

Wind turbine	Day 1	Day 2	Day 3	
PM	1,2	3,4,5	6,7,8,9	10,11,12
CBM type 1	1	4		10
CBM type 2		7		

Long term weekly schedule

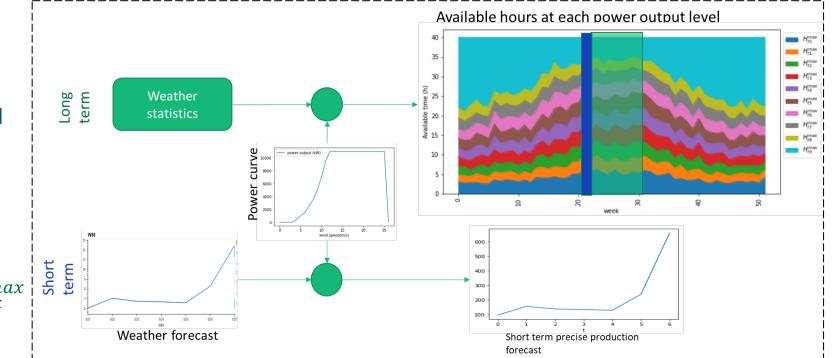
Wind turbine	Week 2	Week 3	Week 4	
РМ	14,15		21,22	
CBM type 1				
CBM type 2	3			

Estimated loss based on production forecasts

Two time horizons are considered¹

• Short ~1 week

SINTEF


• Long ~ 1-6 months

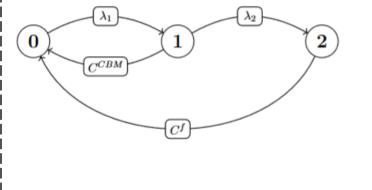
Short term forecast based on precise wind forecast and power curve.

Long term forecast based on statistical weather data and power curve.

- Available hours at production level H_{tk}^{max}
- Treated by constraints

$$\sum_{i \in \mathcal{W}} (\tau^x x_{ti} + \tau^y y_{ti} + \tau^z z_{ti}) = \sum_{k \in \mathcal{K}} h_{tk}$$
$$h_{tk} \le H_{tk}^{max}$$

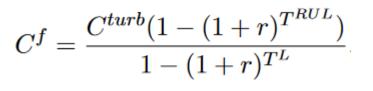
1 Besnard et. al. 2010


Condition based maintenance

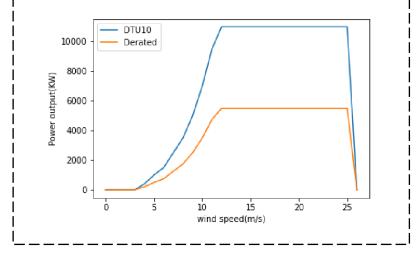
Failure modelling

Condition is monitored and registered on a categorical scale

Condition state	Description
0	No indication of corrosion
1	Corrosion detected
2	Corrosion allowance depleted

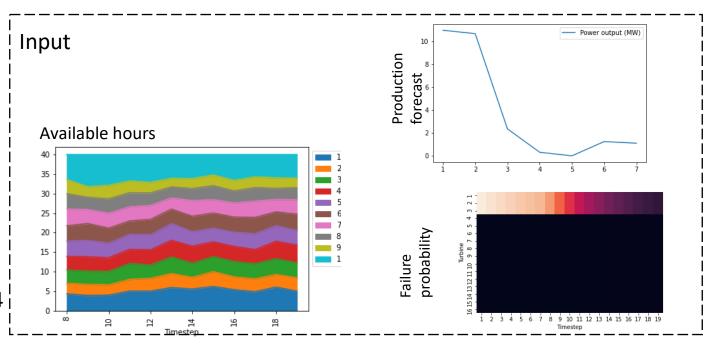

Condition state follows a Markov model

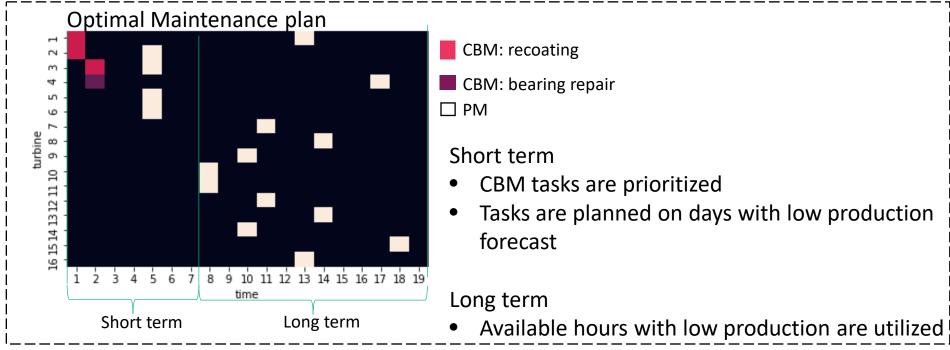
The state can be bought from state 1 to state 0 by sandblasting and recoating.


State 2 is considered a failure. Requires a complete renewal at a cost C^{f} .

Calculated by net present value of accelerated renewal

De-rating


- A degraded condition is detected on a turbine
- To avoid failure the turbine is run at a lower effect.
- Modelled by de-rated power curve



- Wind farm with 16 turbines
- Starting week 15 (~april)
 - Short term: 7 days
 - Long term: 12 weeks
- Corrosion indicated on wind turbines 1,2 and 3.
- Bearing problem and de-rating on wind turbine 4

