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Motivation

• Manual inspections of far offshore wind farms are costly 

➔ remote monitoring of critical components/sub-systems.

• Prognostics is vital for scheduling maintenance while avoiding system 

faults and escalation of damage.

• Uniform corrosion is a major cause of failure of offshore structures.

• Monitoring of uniform corrosion by continuously measuring wall thickness 

using ultrasound sensors.
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Method: dataset generation and corrosion detection

Simulation of ground truth and 

measurements

• Unavailability of suitable datasets ➔ simulate 

ultrasound measurements of wall thickness 

with corrosion.

• Using empirical bi-modal corrosion model of 

[Melchers, 2018] suitable for (most severe) 

splash zone.

• Initial coating degradation phase and relevant 

measurement/process noise and temperature 

influence added.

Corrosion detection
• Kalman filtering with constant state-transition function to 

estimate initial wall thickness (green) and current wall 

thickness (pink).

• Corrosion is detected once the current wall thickness (pink) 

drops below fixed threshold (red).

year
estimated initial wall 

thickness based on the first 

x measurement points

(here, x=8)

fixed 

offset 

(0.02 

mm)

bare steel exposed corrosion 

detectionrobust against 

measurement noise[Melchers, 2018] R. E. Melchers. Progress in developing realistic corrosion 

models. Structure and Infrastructure Engineering, 14:843–853, 2018.
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Corrosion Prognostics

• Switching Kalman filtering: after corrosion 
detection, switch to another Kalman filter for 
prognosis.

• We consider three corrosion/degradation 
models van prognosis:

• Linear corrosion model (i.e., constant 
corrosion rate)

• Power-law corrosion model (Pourbaix)

• Bimodal corrosion model

• Power-law and bimodal models are nonlinear 
➔ use of Unscented Kalman Filtering (UKF) 
here.

• Corrosion is slow ➔ choosing accuracy of UKF 
over speed of Extended KF.

• Both KF and UKF provide both a state 
estimation and an uncertainty probability 
distribution.

State to RUL estimate mapping is nonlinear ➔ Samples taken 

from the probability distribution are mapped to RUL estimate to 

obtain RUL estimate distribution.

Example:
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Performance evaluation

We take the mean α-λ-accuracy over 

multiple datasets with varying 

relevant measurement noise and 

temperature variations.

best method

Example:

α-λ-accuracy = fraction RUL estimations where an area of at least 

β of the RUL distribution is within (1 ± α)*[ground truth RUL].

Prognosis 

algorithm based 

on corrosion 

model

Mean accuracy 

over 5 datasets

Linear 0.400

Power law 0.415

Bimodal 0.376

* see, e.g., Saxena et al, Metrics for offline evaluation

of prognostic performance, IJPHM, vol 1, no 1, 2010
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