

RESEARCH & INNOVATION ACTIONS

CORROSION DETECTION AND PROGNOSTICS FOR OFFSHORE WIND-TURBINE STRUCTURES USING SWITCHING KALMAN FILTERING

<u>Robert Brijder</u>, Stijn Helsen, Agusmian Partogi Ompusunggu

Flanders Make vzw, CoreLab DecisionS, Belgium

Motivation

<#>

- Manual inspections of far offshore wind farms are costly
 remote monitoring of critical components/sub-systems.
- Prognostics is vital for scheduling maintenance while avoiding system faults and escalation of damage.
- Uniform corrosion is a major cause of failure of offshore structures.
- Monitoring of uniform corrosion by continuously measuring wall thickness using ultrasound sensors.

Method: dataset generation and corrosion detection

Simulation of ground truth and measurements

- Unavailability of suitable datasets → simulate ultrasound measurements of wall thickness with corrosion.
- Using empirical bi-modal corrosion model of [Melchers, 2018] suitable for (most severe) splash zone.
- Initial coating degradation phase and relevant measurement/process noise and temperature influence added.

<#>

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 851207".

Corrosion detection

- Kalman filtering with constant state-transition function to estimate initial wall thickness (green) and current wall thickness (pink).
- Corrosion is detected once the current wall thickness (pink) drops below fixed threshold (red).

RESEARCH & INNOVATION ACTIONS

Corrosion Prognostics

- Switching Kalman filtering: after corrosion detection, switch to another Kalman filter for prognosis.
- We consider three corrosion/degradation models van prognosis:
 - Linear corrosion model (i.e., constant • corrosion rate)
 - Power-law corrosion model (Pourbaix) ٠
 - **Bimodal corrosion model** •
- Power-law and bimodal models are nonlinear → use of *Unscented* Kalman Filtering (UKF) here.
- Corrosion is slow \rightarrow choosing accuracy of UKF over speed of Extended KF.
- Both KF and UKF provide both a state estimation and an uncertainty probability distribution.

State to RUL estimate mapping is nonlinear \rightarrow Samples taken from the probability distribution are mapped to RUL estimate to obtain RUL estimate distribution.

RESEARCH

Performance evaluation

 α - λ -accuracy = fraction RUL estimations where an area of at least β of the RUL distribution is within $(1 \pm \alpha)^*$ [ground truth RUL].

We take the mean α - λ -accuracy over **Results:** multiple datasets with varying relevant measurement noise and temperature variations. **Prognosis** Mean accuracy over 5 datasets algorithm based on corrosion model Linear 0.400 best method 0.415 Power law 0.376 Bimodal

* see, e.g., Saxena et al, *Metrics for offline evaluation* of prognostic performance, IJPHM, vol 1, no 1, 2010

watereye

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 851207".

<#>