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Introduction
• Large wind turbines and floating foundations are expected to give lower costs

• Existing reference designs constitute a good starting point, but simple upscaling may

give unfeasible or overly conservative designs

• Previous studies:

– Theoretical upscaling of the substructure geometry with some constrained

dimensions and checking the static and dynamic behavior of the upscaled design

– Parametric studies considering dynamic behavior of the substructure (using 

diffraction/radiation analysis)

• Current work:

– 2D simplified model of a FWT considering rigid motions and tower bending

– Preliminary sizing to support a 25 MW turbine upscaled from the IEA15MW RWT
(1) through a design space search using two reference platforms

IEA 15 MW UMaine VolturnUS-S (2)

INO WINDMOOR 12 MW (3)

Reference designs
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Simplified model

RNA: point mass 

added to tower top

Tower: beam 

elements

Substructure: point mass and 

inertia at the mean water line 

with 3 DOFs (surge, heave 

and pitch)

Mooring: horizontal spring at 

the fairlead position
Pitch hydrostatic 

stiffness

Heave hydrostatic 

stiffness

Beam 

elements

Rigid links

x

z

Modelling assumptions:

– Only surge, heave, pitch and tower fore-aft bending

– Added mass calculated using strip theory with 2D coefficients

– Mooring stiffness based on 18 m surge offset under rated 

thrust

Outputs:

– Natural periods from the global stiffness and mass matrices

– Static pitch under maximum thrust:

𝐶11 𝐶15
𝐶51 𝐶55

𝜂1
𝜂5

=
𝐹𝑡ℎ𝑟𝑢𝑠𝑡

𝐹𝑡ℎ𝑟𝑢𝑠𝑡ℎℎ𝑢𝑏 −𝑚𝑅𝑁𝐴𝑥𝑅𝑁𝐴𝑔 − 𝐹𝑣1𝑥1 + 2𝐹𝑣2𝑥2

𝐹𝑣1, 𝐹𝑣2: vertical tension in the fwd and aft mooring lines at 18 m 

platform surge offset 

(obtained from OpenFAST and theoretically upscaled)

𝑥1, 𝑥2 : the longitudinal distances of fwd and aft fairleads from 

geometric center



4

Parametric analysis setup
Peripheral tower platformCentral tower platform

Assumptions:

▪ Constant steel thickness across all structural members (back-calculated from UMaine platform as 4.6 cm and upscaled)

▪ Fixed ballast (ρ = 2650 kg/m3) in side-columns (aft columns for the peripheral design) and seawater ballast in pontoons

Constraints:

hfixed

hFB

T

D2

D1

rc

hpont
wpont

hsw

zfair

Fixed ballast

Seawater ballast

▪ Maximum hull dimension 120 m ▪ Natural periods for rigid body motions larger than 20 s

▪ Stiff-stiff tower (on the floater): 𝑇𝑡𝑜𝑤𝐹𝐴1 < 60/3𝑃 ▪ Mean pitch at rated wind speed below 30°

Variables

Derived from variables

Theoretically upscaled

Constant

zfair

hFB

T

hfixed

Fixed ballast

Seawater ballast

hsw

hpont

D

rc

wpont

hdeck

wdeck

Design Constraint

Central

𝑤𝑝𝑜𝑛𝑡 = 𝐷2

ℎ𝑓𝑖𝑥𝑒𝑑 varied by

varying fixed to total 

ballast ratio

Peripheral

𝐷

2
≤ 𝑤𝑝𝑜𝑛𝑡 ≤ 𝐷

𝑤𝑝𝑜𝑛𝑡 varied by 

varying 𝑤𝑝𝑜𝑛𝑡/𝐷

For both 

designs

ℎ𝑠𝑤 < ℎ𝑝𝑜𝑛𝑡

ℎ𝑓𝑖𝑥𝑒𝑑 < 𝑇
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Design space exploration

• Objective: Find feasible designs with

minimum steel mass at various max.

allowable static pitch angles

• Theoretically upscaled designs

‒ have over-conservative static pitch angle

‒ may violate the stiff-stiff tower requirement

• A small increase in the max. static pitch

angle results in:

‒ Significant decrease in steel mass

‒ Stiffer tower

• 6 design points for each concept at

different static pitch angles were selected

for coupled simulations along with the

upscaled designs

Central tower Peripheral tower
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Simplified model verification

• Decay tests for the selected designs performed using OpenFAST

• Good agreement with the simplified model

• Discrepancies may be a result of the following:

‒ Accuracy of added mass estimation

‒ Using a linear mooring stiffness matrix in the simplified model

• More results from the coupled analyses for the turbine's

performance in different environmental states will be available in

the full publication


