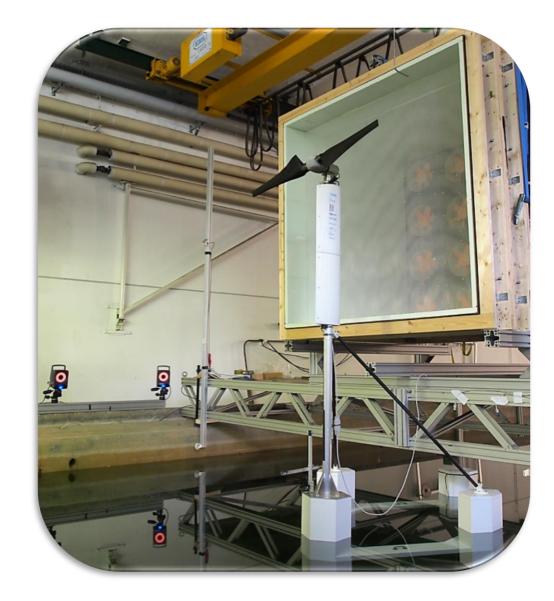
Aerodynamic Scaling Approach for FOWT Model Tests focussing on the Validation of numerical Methods

C. W. Schulz, S. Netzband, M. Abdel-Maksoud

christian.schulz@tuhh.de

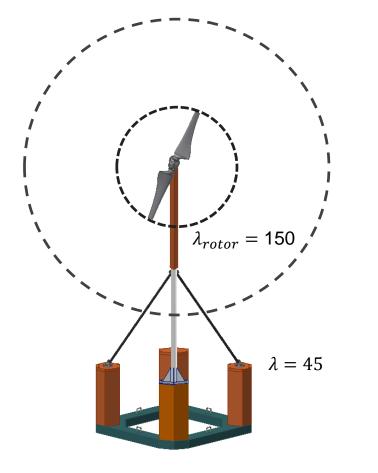
Hamburg University of Technology

Aerodynamic Scaling Approach for FOWT Model Tests focussing on the Validation of numerical Methods


- Application of Froude scaling in FOWT model tests yields extremely low wind speed and huge wind generators
- High quality wind generators for required wind field dimensions often not feasible
- Simple construction of wind generators often lead to strong disturbances in wind filed
- Resulting **disturbances in aerodynamic loads** cause strong fluctuations of measured rotor thrust ...
- ... and induce high repetition error

Fluid Dynamics

Ship Theory

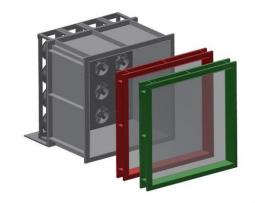

Alternative approach Reduction of rotor diameter & Reduction of wind field dimensions High quality wind generator feasible

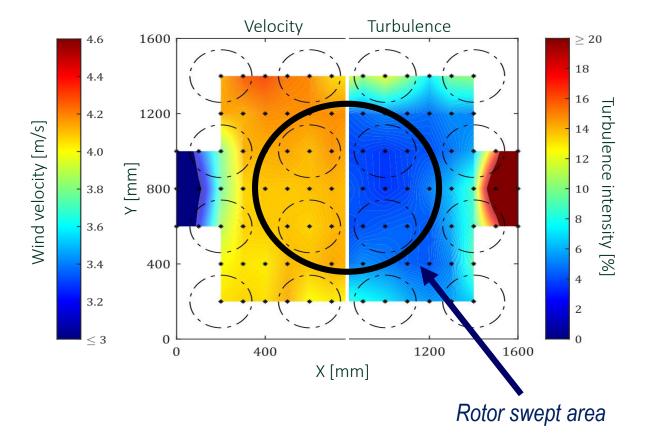
• Scaling approach applied to validate panel method panMARE [1] with the Curse Offshore SelfAligner [2] downwind concept

Fluid Dynamics

Ship Theory

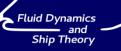
Scaling

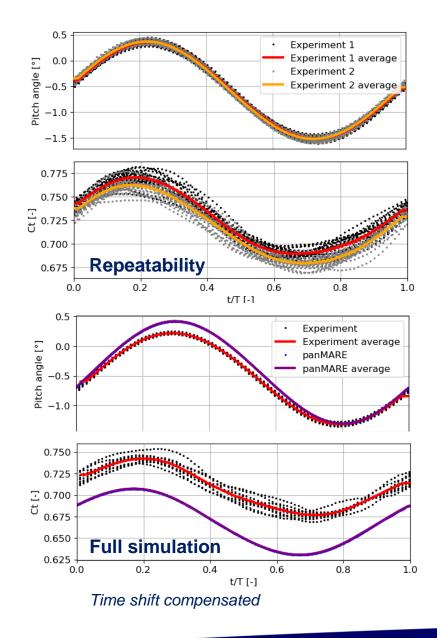

- Froude scaling applied to floating platform and environment except rotor: $\lambda = 45$
- Rotor scaled by $\lambda_{rotor} = 150$
- Wind speed is approx. 3 times higher compared to conventional scaling to maintain scaled thrust force according to Froude's law of similarity
- Wind generator cross section area is approx. 9 times smaller compared to conventional scaling
- Amplitude of rotor thrust force oscillation due to tower top motion is approx. 3 times smaller
- Aerodynamic damping is present, but reduced



Wind generator

Fluid Dynamics and Ship Theory


- Cross section of 1.6 m x 1.6 m
- Homogeneous flow due to settling zone with a length of 1.4 m and 2 grid screens
- Complete coverage of the rotor swept area
- Turbulence intensity below 5 % inside rotor swept area
- Maximum spatial wind speed nonuniformity of 2 % inside rotor swept area



C. W. Schulz

Repeatability

- Wave generation inaccuracies and low speed current induce repetition error
- Repetition error can be reduced significantly by phase averaging
- Remaining **repetition error vanishing** for phase averaged 6-DOF motion
- Moderate repetition error of rotor thrust force due to motion compensation

Comparison with simulations

- 1. Hybrid simulations: Simulation model forced to measured 6-DOF motion
- Aerodynamic and mooring loads investigated independent from wave loads
- Differences in rotor thrust amplitude in range of repetition error

2. Full simulations

- Considerable agreement between simulations and experiment in surge, heave and roll decay tests
- Small deviations at lower wave heights in platform pitch motion and rotor thrust amplitude

Aerodynamic Scaling Approach for FOWT Model Tests focussing on the Validation of numerical Methods

Conclusion

Fluid Dynamics and Ship Theory

- Application of alternative scaling approach allows for the use of high quality wind generator and small wind turbine
- Inertia force compensation of tower top loads causes uncertainty in thrust force below 3 %
- Panel method *pan*MARE validated in aerodynamic and hydrodynamic domain
- Precise validation of rotor thrust in time domain possible
- Scaling approach well suited for validation of numerical methods


Advantages	 Smaller wind generator makes a more elaborate design with a turbulence intensity below 5 % and a maximum non-uniformity of 2 % feasible
	 Simple installation of the wind generator without crane due to smaller cross section possible
	 Smaller size of the rotor yields less restrictions due to light-weight design
	 Complex aerodynamic phenomena like aerodynamic damping can be observed precisely
Disadvantages	 Rotor thrust oscillation amplitude caused by axial tower top motion reduced

Acknowledgements

Federal Ministry for Economic Affairs and Climate Action Projektträger Jülich Forschungszentrum Jülich

Literature

Fluid Dynamics

Ship Theory

[1] Netzband S, Schulz CW, Göttsche U, Ferreira Gonzales D, Abdel-Maksoud M. 2018. A Panel Method for Floating Offshore Wind Turbine Simulations with Fully-Integrated Aero- and Hydrodynamic Modelling in Time Domain. Sh. Technol. Res.

[2] Cruse J, Abdel-Maksoud M, Düster A, Bockstedte A, Haake G and Siegfriedsen S. 2021. Self-aligning floating wind turbine has deep water potential. Ship & Offshore, No. 1, p. 24-29

C. W. Schulz, S. Netzband, M. Abdel-Maksoud

