$01000111 \ 01100101$	01000111 01100101	$01000111 \ 01100101$	01000111 01100101	01000111 01100101	01000111 01100101	53 47 52 40
01101110 01100101	01101110 01100101	01101110 01100101	01101110 01100101	01101110 01100101	01101110 01100101	
01110010 01100001	01110010 01100001	01110010 01100001	01110010 01100001	01110010 01100001	01110010 01100001	TE S SO
01110100 01101111	01110100 01101111	01110100 01101111	01110100 01101111	01110100 01101111	01110100 01101111	
01110010 01110011	01110010 01110011	01110010 01110011	01110010 01110011	01110010 01110011	01110010 01110011	
00101100 00100000	00101100 00100000	00101100 00100000	00101100 00100000	00101100 00100000	00101100 00100000	
01100010 01100001	01100010 01100001	01100010 01100001	01100010 01100001	01100010 01100001	01100010 01100001	91
01110100 01110100	01110100 01110100	01110100 01110100	01110100 01110100	01110100 01110100	01110100 01110100	54 1 State
01100101 01110010	01100101 01110010	01100101 01110010	01100101 01110010	01100101 01110010	01100101 01110010	
01101001 01100101	01101001 01100101	01101001 01100101	01101001 01100101	01101001 01100101	01101001 01100101	
01110011 00101100	01110011 00101100	01110011 00101100	01110011 00101100	01110011 00101100	01110011 00101100	Annual Contraction of the local data
00100000 01101101	00100000 01101101	00100000 01101101	00100000 01101101	00100000 01101101	00100000 01101101	
01100101 01110100	01100101 01110100	01100101 01110100	01100101 01110100	01100101 01110100	01100101 01110100	
01100101 01110010	01100101 01110010	01100101 01110010	01100101 01110010	01100101 01110010	01100101 01110010	
01110011 00101100	01110011 00101100	01110011 00101100	01110011 00101100	01110011 00101100	01110011 00101100	
00100000 01101001	00100000 01101001	00100000 01101001	00100000 01101001	00100000 01101001	00100000 01101001	
01101110 01100100	01101110 01100100	01101110 01100100	01101110 01100100	01101110 01100100	01101110 01100100	AGO - COMPANY AND A COMPANY
01110101 01110011	01110101 01110011	01110101 01110011	01110101 01110011	01110101 01110011	01110101 01110011	Annaly and a second second
01110100 01110010	01110100 01110010	01110100 01110010	01110100 01110010	01110100 01110010	01110100 01110010	
01101001 01100001	01101001 01100001	01101001 01100001	01101001 01100001	01101001 01100001	01101001 01100001	
01101100 00100000		01101100 00100000	01101100 00100000	01101100 00100000	01101100 00100000	
01100001 01110011	× .	01100001 01110011	01100001 01110011	01 011	011	\mathbb{Q}
0 1100 10 100 10 1		011 101	0111001101100101	01: .01	011 101	
		011011			011 011	
		001	○ 1 🗄 ト 🛛 1	00:	001	👻 BLOCK CHAIN 🖓
0		011 _ 100		01:00	011 nnn 100	®® ⊕ ⊕ ♥
		001	ᅋᄯᄫᆞᅐᅀᄫᆞᅆ	00:_	001 000	
0		011 000		01;	011 000	
01101101 01101111		01101101 01101111	01101101 01101111	01101101 01101111	01101101 01101111	
01110101 01101110		01110101 01101110	01110101 01101110	01110101 01101110	01110101 01101110	

Digital Green Shift of Offshore Wind Energy

Umit Cali^a, Salvatore D'Arco^b, Santiago Sanchez-Acevedo^b, O. Anaya-Lara^{a,b,c}, J.O. Tande^b

NTNU (a) SINTEF (b) University of Strathclyde (c)

- Introduction
- Digital Green Shift and the 5Ds of Energy
- Energy Cyber Physical Social Systems
- Digital Green Shift and Offshore Wind Energy
- Conclusion and Outlook

- This massive paradigm change that aims to enable the transformation from fossil fuel-based energy technologies to greener ones, is known as "Green Shift".
- The advent of Industry 4.0 technologies such as Artificial Intelligence (AI), Distributed Ledger Technology (DLT), cyberphysical-social systems (CPSS) and others has triggered a new transformation wave named "Digital Green Shift".
- **Energy policy makers** are meanwhile, ensuring that countries and investors in the energy field develop the necessary energy policy instruments and support mechanisms to facilitate achieving the demanding government targets on emissions and climate change mitigation.

Energy Cyber Physical Social Systems

- Offshore wind energy domain consists of large spectrum of phases and domains from Manufacturing to grid integration.
- Operational and planning tasks are often quite interconnected and sophistication which also accommodates great potantial for the next generation innovative technologies to increase the economic, technical, societal and environmental added value of offshore wind energy.
- **Digitalization technologies** are among the most promising ones.

Conlusion & Outlook

- COVID 19 levels accelerates the transition to Full Digital Economies
- The electric industry landscape is changing due to decreasing cost and increasing penetration of renewable (decarbonization), distributed energy resources and digitalization technologies (Green Digital Shift)
- There are upcoming opportunities: for the massive Offshore Energy Development plans
- Blockchain and distributed ledger technology (DLT) has a high potential to transform the future energy systems and markets landscape.
- Fusion of AI and DLT
- Digitalization technologies contribute the UN Sustainability Development Goals

Vielen Dank fuer Ihre Aufmerksamkeit! **Takk for oppmerksomheten! Thanks for your attention ! Grazie per l'attenzione !** Gracias por tu atención ! **Ilginize teşekkürler!**