International Auctions for the Support of Renewable Energy in Offshore Hubs with cross-border interconnection

Authors: Mario Garzón González, Lena Kitzing

AUctions for Renewable Energy Support II

Wind offshore hub in the North Sea: How could international cooperation on a joint auction look like?

Fictive case, based on NSWPH hub example Reference: radially connected wind development without hub

Aim of the analysis:

To explore different options for international auctions, with focus on cost/benefit allocation and its impact on financing shares in a joint pool

Starting point of the analysis:

To create common grounds for the discussion, we assume:

- Creation of an offshore bidding zone
 -> we would like to investigate the potential of mitigating low offshore prices through auction design
- Creation of a joint auction
 - -> we would like to investigate the opportunities and obstacles in the negotiation towards the establishment of international joint offshore development

Scenarios analysed*:

1. Rapid decarbonisation = low energy prices = subsidies required

2. Limited decarbonisation = high energy prices = no subsidies required

* Scenario results are obtained through energy systems optimisation in BALMOREL model

Auctions for the Support of Renewable Energy

Auctions for the Support of Renewable Energy

Auctions for the Support of Renewable Energy

North Sea Wind Power Hub

Location	1	2	3	4
Cluster size: 2 GW	53.9%	53.2%	54.1%	Not studied in detail;
Cluster size: 6 GW	52.1%	51.3%	52.5%	expected to be similar
Cluster size: 12 GW	50.7%	49.9%	51.0%	to locations 1-3
Cluster size: 24 GW	49.7%	48.9%	50.0%	
Cluster size: 36 GW	49.2%	48.4%	49.4%	

NSWPH – Market Set Ups

Studies Related to the NSWPH

PROMOTioN (Progress on Meshed HVDC Offshore Transmission Networks), 2016-2020:

Final deliverables: Optimal scenario for the development of a future European offshore grid & deployment plan 2020-2050

Other reports: DC grid protection, regulation and financing, and grid topology converters

The study recommends the standardisation of a 2 GW. 525 kV. platform and converter design

Roland Berger for the European Commission, 2019:

Savings corresponding to 2,500 M.€ during the entire lifetime of the project (25 years) considering only CAPEX and OPEX

Barriers: Market arrangement, lack of a transnational support scheme for renewable energy, fair distribution of welfare

Market modelling was not carried out for this study

study K

Navigant (PowerFys), 2020: Offshore hybrid assets provide cost advantages when compared with the traditional radial connection

Methodology

Methodology - Balmorel

Characteristics: Open source, deterministic, bottom-up

Optimise simultaneously the generation, transmission, and consumption of both heat and electricity

Objective function: minimises the total costs of the system, constrained by technical, physical or regulatory aspects

Assumes perfect competition between energy producers

Optimises the energy system from a socio-economic point of view

Add-ons: Heat demand from Industry & Individual users Private electric vehicles (EVs) Decarbonisation of the rest of the transport sector as additional electricity demand (2 constrains)

Methodology – Model Set Up

Countries Considered

Methodology - Balmorel

- 1. Investment Run
- 2. Storage and planned maintenance optimisation
- 3. Stochastic outage simulation

Methodology - Balmorel

- 1. Investment Run
- 2. Storage and planned maintenance optimisation
- 3. Stochastic outage simulation
- 4. Day-Ahead

Output: Detailed hourly energy dispatch

- Hourly energy generation mix
- Energy flow among regions
- Electricity and heat prices
- Curtailment of variable renewable energy

Methodology – Economic Analysis

Methodology – Economic Analysis

Results – Electricity Production Scenario Comparison

Slow Decarbonisation Scenario

Results of scenario 1 (Rapid decarbonisation)

The Netherlands

Country

Germany

Results of scenario 1 (Rapid decarbonisation): Shares across countries

Germany receives more electricity than its installed share and has the strongest price reduction impact
 Denmark receives higher congestion rents as compared to its share of interconnection cost

* Physical electricity flows from hub to country, as optimised by system, average over project lifetime

Price in the Hub: Scenario 1 – Subsidies required

Hub Taking Price from	2035 [% of the year]	2045 [% of the year]
DK	45%	37%
NL	30%	35%
DE	25%	28%

Results of scenario 2 (Limited decarbonisation)

70

Germany

Note: Two numbers represent the trend over the years (2035/45)

Results of scenario 2 (Limited decarbonisation): Shares across countries

The Netherlands receive more electricity than their installed capacity and have the strongest price reducing impact
 The Netherlands receive the highest share of congestion rents

Price in the Hub: Scenario 2 – Subsidies required

Hub Taking Price from	2035 [% of the year]	2045 [% of the year]
DK	42%	40%
NL	32%	42%
DE	26%	18%

Scenario 1 Costs & Benefits (Country Perspective)

Scenario 2 Costs & Benefits (Country Perspective)

- Multiple studies have shown that energy islands could reduce significantly the total energy system cost while facilitating the integration of renewable energy

- Benefits and costs can be unequally distributed -

A mechanism to ensure a fair distribution of welfare is required (TSOs vs Project Developers vs Governments/Consumers)

- The problem can be attacked by different sides – Free Market, Market Design based solutions, Support Schemes

- We believe that an effective design of international auctions can lead to a fairer distribution of welfare by financing joint auctions through money pool

Thank you for your attention!

Contact information:

Mario Garzón González mggz@ens.dk

Lena Kitzing lkit@dtu.dk

Financing of a joint auction through auction pool: Different options (Scenario 1 = Support required)

	Installed capacity in hub	RES volumes received	Net Effect without reallocation	CfD Payment without pool*	Option 1: based (on installed capacities	Option 2: based on received volumes	Option 3: net effects	Option 4: net effects w/o trans.
	17%	13%	-1,437	-1,641	-1,996	-1,527	+2,472	+2,620
=	33%	32%	+1,750	-3,641	- 3,876	- 3,759	- 715	- 1,388
	50%	55%	+38,031	-6,464	-5,874	-6,460	-13,504	-12,977
-								
TOTAL	100%	100%	+38,344	-11,746	-11,746	-11,746	-11,746	-11,746
Per country	33%	33%	+12,781	-3,915				

(all numbers in M€, 2029 PV over 25 years lifetime)

* Based on production delivered from country OWF into hub

Contribution to joint support pool

Results – Electricity: Demand (N1)

Results – Electricity: Generation (N1)

Results – Heat: Generation (N1)

MSc. Thesis - Economic Feasibility Analysis of the North Sea Wind Power Hub

DTU

Costs: Investment and O&M

Total Costs [M€2029 PV]	DK	NL	DE
OWF CAPEX	4,342	9,703	14,364
Transmission Line	255	1,530	2,104
OPEX	2,163	4,326	6,489
Real annual OPEX [M€/year]	109	219	328

Home Price Market Option

Cooperio	Total System Costs Savings	Avg. Elec. Price [€/MWh]				
Scenario	Scenario vs Ref. Radial case [Avg. M€/year]		NL	DE	HUB	
Offshore Bidding Zone	2,501	40.2	41.8	42.4	40.5	
Home Market Price	2,491	40.3	41.5	42.3	40.6	

Results – Economic Analysis N5

Parameter	N5			N5 + TL			
[M€ - 2029 PV]	DK	NL	DE	DK	NL	DE	
CFD [€/MWh]	63.02	65.1	69.6	66.52	76.0	80.4	
Support	-1658	-3272	-5234	-2070	- <mark>5813</mark>	-8898	
Trans. Line	-255	-1530	-2104	-255	-1530	-2104	
Con. Rents	0	0	0	0	0	0	
Total Sup.	-1913	-4802	-7338	-2070	- <mark>5813</mark>	-8898	
Sum. Sup.		-14053			-16781		
Cons. Surplus	-	-	-	-	-10	- 11	
Final Balance	-	-	-	_	-	-	

Disc. Prod [TWh]	97.5	193.3	280.9	97.5	193.3	280.9
Disc. Rev	6191	12638	19655	6491	14486	22322
LROE [€/MWh]	63.5	65.4	70.0	66.6	74.9	79.5

Methodology – Model Set Up

Countries Considered

Time Resolution

Step	Years	Seasons	Terms	${f Foresight}$
Invesment Run	3	16	24	Two years: 2025 & 2035 / 2045
Sto. and Plan. Maint.	3	364	6	One year: $2025 / 2035 / 2045$
Day-Ahead	3	364	24	One day

DTU

Consumer Surplus Delta

$$\Delta Cs_{m,k,y} = \sum_{t,s,u} Cd_{k,y,t,s,u}^{ref} \cdot Ep_{k,y,t,s,u}^{ref} - \sum_{t,s,u} Cd_{m,k,y,t,s,u} \cdot Ep_{m,k,y,t,s,u}$$

 $\forall m \in M, k \in K, y \in Y$

Consumer Surplus Delta

 $\forall \ m \in M, \ k \in K, \ y \in Y$

Demand * Energy Price (Ref.) - Demand * Energy Price (Scenario)

Consumer Surplus Delta

$$\Delta Cs_{m,k,y} = \sum_{t,s,u} Cd_{k,y,t,s,u}^{ref} \cdot Ep_{k,y,t,s,u}^{ref} - \sum_{t,s,u} Cd_{m,k,y,t,s,u} \cdot Ep_{m,k,y,t,s,u} \qquad \forall m \in M, \ k \in K, \ y \in Y$$

Producer Surplus Delta

$$\Delta Ps_{m,k,y} = \sum_{t,s,u} (Pg_{m,k,y,t,s,u} \cdot Ep_{m,k,y,t,s,u} - Cg_{k,y,t,s,u}) - \sum_{t,s,u} (Pg_{k,y,t,s,u}^{ref} \cdot Ep_{k,y,t,s,u}^{ref} - Cg_{k,y,t,s,u}^{ref})$$

 $\forall m \in M, k \in K, y \in Y$

Consumer Surplus Delta

$$\Delta Cs_{m,k,y} = \sum_{t,s,u} Cd_{k,y,t,s,u}^{ref} \cdot Ep_{k,y,t,s,u}^{ref} - \sum_{t,s,u} Cd_{m,k,y,t,s,u} \cdot Ep_{m,k,y,t,s,u} \qquad \forall m \in M, \ k \in K, \ y \in Y$$

Producer Surplus Delta

$$\Delta Ps_{m,k,y} = \sum_{t,s,u} (Pg_{m,k,y,t,s,u} \cdot Ep_{m,k,y,t,s,u} - Cg_{k,y,t,s,u}) - \sum_{t,s,u} (Pg_{k,y,t,s,u}^{ref} \cdot Ep_{k,y,t,s,u}^{ref} - Cg_{k,y,t,s,u}^{ref})$$
Revenues - Costs (Scenario)
Revenues - Costs (Scenario)
$$\forall m \in M, \ k \in K, \ y \in Y$$

Consumer Surplus Delta

$$\Delta Cs_{m,k,y} = \sum_{t,s,u} Cd_{k,y,t,s,u}^{ref} \cdot Ep_{k,y,t,s,u}^{ref} - \sum_{t,s,u} Cd_{m,k,y,t,s,u} \cdot Ep_{m,k,y,t,s,u} \qquad \forall m \in M, \ k \in K, \ y \in Y$$

Producer Surplus Delta

$$\Delta Ps_{m,k,y} = \sum_{t,s,u} (Pg_{m,k,y,t,s,u} \cdot Ep_{m,k,y,t,s,u} - Cg_{k,y,t,s,u}) - \sum_{t,s,u} (Pg_{k,y,t,s,u}^{ref} \cdot Ep_{k,y,t,s,u}^{ref} - Cg_{k,y,t,s,u}^{ref})$$

 $\forall m \in M, k \in K, y \in Y$

TSO Surplus — Congestion Rents

Transmission Lines Costs

	D	K - Hub	N	L - Hub	D	E - Hub
Location	\mathbf{km}	M€/GW	\mathbf{km}	M€/GW	\mathbf{km}	M€/GW
L1	310	310-465	250	250-375	310	310-465
L3	100	100 - 150	300	300-450	275	275-412

Data provided by PROMOTioN project

OWF Cost	OWF Cost Data		DK	NL	DE
Invesment CAPEX $[M \in /MW]$	1.57	Tax rate *	22%	25%	30%
Hub CAPEX * $[M \in /MW]$	0.19	Private disc. rate **	8%	8%	8%
Fixed O&M [€/MW/year]	$36,\!053$	Socio-economic disc. rate	4%	4%	4%
Variable O&M [€/MWh]	2.7	Inflation	1%	1%	1%
Lifetime [year]	30	* KMPG. Corporate tax rates table. Technical report. 2020.			

Danish Energy Agency. Technology Data - Generation of Electricity and District heating. Technical report. 2020. *M J Koivisto and J Gea-Bermudez. NSON-DK energy system scenarios-Edition 2. Technical report. 2018.

* KMPG. Corporate tax rates table. Technical report. 2020.

**Roland Berger and European Commission. NSWPH in the context of the North Seas Offshore Energy Clusters study. 2018, pages 5–6.

North Sea Wind Power Hub Consortium

Formed by:

TSOs Energinet and Tennet, the Port of Rotterdam, and Gasunie, an European energy infrastructure company

Objective:

Add the techno-economic perspective to facilitate discussions between policy makers and North Sea stakeholders

'Hub-and-Spoke' concept:

Modular hubs that connects offshore wind farms and interconnection capacity between multiple countries.

- Increase the utilisation rate of the asset
- Reduce overall costs
- Modularity allows step-by-step approach adjusted to the needs of the system

Optimal capacity: 10-15 GW (12GW chosen)

Ref. case: 6 GW Germany, 4 GW The Netherlands, 2 GW Denmark

