

Somoano, M. Battistella, T. Fdez-Ruano, S. Guanche, R.

Uncertainties assessment in Real-Time Hybrid Model for ocean basin testing of a Floating Offshore Wind Turbine

нcantabria

15 January, 2021

 $Re = \frac{uD}{m}$

 $Fr = \frac{u^2}{gD}$

- Reynolds scale at the wind tunnel which limits the hydrodynamic problem.
- Froude scale at the wave basin which limits the aerodynamic problem.

$$\lambda = \frac{D_p}{D_m} \qquad \qquad \lambda^{3/2} = \frac{Re_p}{Re_m}$$

While Re deviation may be neglected in water, leads to a consistent change in the associated aerodynamic thrust acting on the rotor.

Real-time hybrid testing overcomes this issue by performing scale model testing only on a subpart of the whole structure, the aerodynamic loads being simulated numerically.

$$\lambda^{1/2} = \frac{t_p}{t_m} \qquad \qquad \lambda^3 \frac{\rho_m}{\rho_p} = \frac{F_p}{F_m}$$

(Battistella, et al., 2018) made possible the reproduction of the most important aerodynamic loads by using a multi-fan system as actuators at the hub height of the physical model.

Uncertainties assessment in **ReaTHM** for ocean basin testing of a **FOWT**

By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified.

corewind

To resume the uncertainties included in scaled model tests of FOWTs in wave tank layouts, focusing on the

- Identification
- Quantification
- Propagation

of the uncertainties related with the implementation and application of the HIL strategies.

To set the uncertainty bounds on the response metrics of interest, evaluating the accuracy of modelling tools and the levels of the test reliability.

Identify all the possible sources liable to uncertainty:

Hybrid system is modelled by means of the combination of a numerical simulation, sensors, actuators and control software.

Define quantities of interest to be evaluated:

The variable selection planned to focus on the more significative sources of uncertainty and limit the number of simulations.

corewind

11

Simulate in OpenFAST:

5400 s for various noise levels defined by Normal distributions of each QOI measurement.

output of perturbed and baseline simulation.

Gumbel distribution for each load case:

Fitted with the resulting Mean discrepancy level averaged for various levels of noise in each QOI evaluated.

13

Incantabria

corewind

Name	Duration [s]	Waves	Wind [m/s]	Turbine
DLC1.3	5400	Irregular;	Turbulent ETM;	Operational
		Hs=2m, Tp=6s	10.5 m/s	Active control
	5400	-	Turbulent ETM;	Operational
			10.5 m/s	Active control
DLC1.6	5400	Irregular;	Turbulent NTM;	Operational
		Hs=5.11m, Tp=9s	10.5 m/s	Active control
	5400	Irregular;		Operational
		Hs=5.11m, Tp=9s	-	Active control
DLC6.1	5400	Irregular;	Turbulent EWM50;	Idling
		Hs=5.11m, Tp=9s	41.2 m/s	Active control
	5400	_	Turbulent EWM50;	Idling
		-	41.2 m/s	Active control

corewind

COREWIND D1.2: Design load basis at *Gran Canaria Island* (SPAIN).

IDENTIFICATION OF UNCERTAINTY SOURCES

Neglect inaccuracies:

- In the numerical sub-model.
- In the sea state characterization.
- In the Qualisys Track Manager.

Uncertainties in the fabrication of the scale model:

- Mooring parameters:
 - Mooring length
 - Mooring weight
- Platform parameters:
 - Metacentric height (GM)
 - Inertia for pitch tilt rotation about the centre of mass (lyy)

Uncertainties in the multi-fan system:

- Limited force actuation bandwidth
- Latency in the overall coupling system's response

UNCERTAINTY QUANTIFICATION

Inaccuracy in the length of the mooring lines are more relevant than in their mass per unit length.

Gumbel distributions of Uncertainties due to Mooring Length

Incantabria

corewind

22

Inaccuracy in the metacentric height are more relevant than in the Inertia for pitch tilt rotation.

Gumbel distributions of Uncertainties due to Platform GM

Uncertainties assessment in **ReaTHM** for ocean basin testing of a **FOWT**

Amounts of introduced noise in the multi-fan latency are limited by the 10 ms time step.

Gumbel distributions of Uncertainties due to HIL Bandwidth

- Inaccuracy in the length of the mooring lines are more relevant than in their mass per unit length.
- The propagation of uncertainty in the platform GM presents significantly higher values than those ones due to discrepancies in the lyy.
- The latency in the reaction forces of the coupling system has a larger effect than the limited coupling bandwidth. However, amounts of introduced noise in the multi-fan latency are limited by the 10 ms time step.

Monte Carlo method:

- \succ 10³ simulations with error sources from:
 - Mooring length
 - Platform GM
 - HIL bandwidth

acting simultaneously to figure out the effect of combined discrepancies.

Convergence analysis of the MPMean of combined discrepancies.

 $MPMean = \mu - 0.45 \cdot \sigma$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815083.

Somoano, M. Battistella, T. Fdez-Ruano, S. Guanche, R.

Thanks for your attention!

•

TON

нcantabria

15 January, 2021