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First objective: design of a new kind of controller for floating wind turbine in Region Il

* Control objectives: regulation of power output at its rated value, and reduction
of the pitch motion of the floating platform

* Robust control versus uncertainties and perturbations

* Very reduced information on the modeling

* Low tuning effort and low—computational capability

* High level performances (power, tower motion)

Second objective: evaluation of the performances of the proposed control strategy on an
Experimental set-up and comparison with controllers (GSPI, LQR).
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Modeling and control design based on linear control theory

* Linear dynamic model obtained from FAST
* Reduced state-space model: rotor velocity, platform pitch motion

Collective Blade

r = [gp %, QT]T U = PBeol Pitch Control

* Linear model around an operating point depending on wind conditions and
rotor velocity

T = AAvg’x‘l‘BAvg'u‘I'BdAvg’é

0 1 0 0
Wind speed: 18 m/s AAUQZ —0.0141 —0.0405 —0.0004| , Bayg = |—0.0035| , Bgavg =
Rotor speed : 12.1 rpm
—0.0757 —2.3031 —-0.2304 —1.1864
0 1 0 0
Wind speed: 20 m/s . o o
Rotor ceed 1121 1om  Advg = |—0.0141  —0.0403 —0.0006| , Bavg = |—0.0035| , Biavy =
—0.0679 —2.5069 —0.3182 —1.3856
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Region lll: from 11.3 m/s to 25 m/s

Drawbacks
* At each operating point corresponds such a system -> use of a large amount of systems for the whole

operating domain
* Consequence: huge effort for control design - 1 operating point = 1 linear system = 1 controller tuning
(some solutions: GSPI [Jonkman et al., 2009], LQR [Namik et al. 2008], ...)

An other point-of-view [Cheng and Plestan, Wind Energy, 2021]

W | i = Aayg(x,t) x4 Bayg(z,t) - u+ Bg,, (z,t)-6 | M| & = fu(r,t)+ gu(r, t)u

Uncertain nonlinear system

Questions: how to design an efficient control strategy supposing that the dynamics of the system is not
well-known, i.e. functions f, , and g, are not known ? that the system is highly perturbed ?
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To summarize
* The system on which the control design is made reads as

T
i = (fu@ O Hgu( tu | = = o ¢ Q] u=fu

Collective Blade
Pitch Control

Unknown functions (supposed bounded, but unknown bounds)

e Control objective: power regulation to its rated value and limitation of tower pitching

Platform pitching
Control output [Lackner, 2009; Lackner, 2013] forward
(@ <0,]¢|t) Aerodynamic
torque increases Aerodynamic
S = er — QTO + kgﬁ thrust increases | Prevent the platform
0 — pitching forward
o (@l L. Qr — Q)

Assumption: rel.deg.(S)=1. Question: how to define the control input u forcing S towards 0 ?
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From previous assumption, dynamics of the output reads as S = a(-)]+ b()]u

Unknown functions (supposed bounded, but unknown bounds)

A recent solution [Gutierrez et al., 2021] named simplified adaptive supertwisting algorithm (SAST)
* |t forces Stowards O in spite of perturbations and uncertainties

* It requires no information on a and b Sliding mode
* It requires a very limited number of tuning parameters control theory
* |trequires low-computational capabilities
t J2
u = —@S| 2sign(S 7sign(5)d7' Only two parameters are required for the
Dynamic gain whole operating domain
: L(|S] — if L > L, * M:.accuracy
L = @7 * L. :minimalvalue
@ if L < L,
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SAST Principle

) e The gain L must be large enough to ensure the
t L

L 1, convergence towards O but not too large to reduce
u = —2L[S|zsign(5) — ESIgn(S)dT the energy consumption and the control input

oscillations.
i = L (‘S| - N) 9 if L > Ly, * Ifabs(S) > u(inaccuracy), the gain L increases -
T ) convergence towards to 0.
L, if L < Ly, ©
* Ifabs(S) < i (accuracy), the gain L decreases —

reduction of energy and oscillations.

Example

S =u+ ot)

Sliding variable
o o o IN o

10sin (2¢) if ¢t < 50 sec oo e Ry e
o(t) =
50 cos (2t) if t > 50 sec

L, = 0.005, 1 = 0.03
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Experimental set-up [Arnal, Ph.D. thesis, 2020]

Physical system

Tower + Platform + Mooring lines

+ Actuator + Sensors + Waves B}
Numerical model

Rotor aerodynamics
+ Control system + Wind

Tower and platform
dynamics

1:40 scale model based on DTU 10MW wind turbine
(RNA and tower) and OC3 5 MW Hywind (spar-buoy
floating structure)

15/01/2021
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Fairlead Actuator

Force transducer

Additional

WIFI
communication

Mooring tension
Mooring line sensor

Flexible mast

The actuator allows to generate the aerodynamic forces
calculated by the numerical simulations.

Scale 1:40

RNA mass [kg] 12.45

Hub height above SWL [m] 3.03

Tower height [m] 2.666

Tower mass [kg] 13.48

Floater mass [kg] 303.8

Anchor depth [m] 5

Mooring line diameter [mm]| 3.7

Fairleads depth [m)] -0.335 8
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Comparison between
* the GSPI controller based on DTU approach [Hansen and Henriksen, 2013]

t
u = er(t)—FKi/erT
0

 the LQR controller developed by D ICE company (based on linear model)
T
u = —krLQr-<T J = lim 2! Qx + u! Rudt

t—0o0 Jo

* the SAST control strategy (only two parameters)

Test conditions
* 14 m/s stochastic wind with 9% turbulence intensity
* Irregular wave with significant height of 3 m, peak spectral period of 12 sec.

15/01/2021 DeepWind 2021



CENTRALE
NANTES

LHEEA M D-ICE
m ﬁEN¥ESALE @ ENGINEERING

Rotor
speed [rpm]

Platform
roll [deg]

Platform
pitch [deg]

Platform
yaw [deg]

—_
~

—
()

=N

o
[oe]

12

AI
MNOI\)J:-O?CD

-1.2¢

147

-1.6

12

00 1250 1300 1350 1400

TAVAVE e

Apons

00 1250 1300 1350 1400

Time [s]

15/01/2021

00 1250 1300 1350 1400

00 1250 1300 1350 1400

Platform roll Blade pitch
& rate [degls] o

Platform pitch

Platform yaw

GSPI

LQR

SAST|

20

angle [deg]

0
1200

1250

1300

1350

1400

.05

e Better tracking of rotor speed with LQR and SAST
controllers

.05
1200

1250

1300

1350

1400

* Reduction of platform angles (roll, pitch)

o
P
8 . .
- * Reduction of pitch rate
(0]
A s s s
1200 1250 1300 1350 1400
0.1
7
[o)]
[4}]
S 0
Qo
o
-0.1 : : :
1200 1250 1300 1350 1400
Time [s]

DeepWind 2021 10



IS2N |7 CENTRALE 'C-El;'uERE{\E adP D -ICE
TAAN NANTES NANTES ENGINEERING
45 ‘
[ [Nl
g 1 -SASTi |
Sos 1.2 = [ [Rel Sy
% 0.6 I sAST
g 0.4 o 1
Z0.2 c_:ﬁ
0 > 0.8
Rotor speed error Platform roll Platform pitch Platform yaw 8
N
= 0.6
£
% 1 g 04
Sos8
8os 0.2
8
£04 0
=02 TB side-to-side  TB fore-aft TB torisional ML #1 ML #2 ML #3

o

Platform roll rate

Normalized RMS/VAR values of performances indicators

15/01/2021

0
Platform pitch rate Platform yaw rate Blade pitch angle

(Black line = 1: GSPI)

Normalized STD values of Tower Base moments and Mooring
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Lines tensions (Black line = 1: GSPI)
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The system allows to get, by data replaying and simulations, unmeasured variables as blade roots (BR)

moments
0 :I. l]

BR flap-wise BR edge-wise BR pitching

—_
(&)

Normalized DEL

o
()]

Conclusions (for these tests)

e SAST and LQR have reduced rotor speed error and platform pitch motion

* The blade pitch actuator is more solicited with SAST and LQR than GSPI

* The mechanical contraints (as mooring lines tension, blade roots moment) are reduced with SAST

15/01/2021 DeepWind 2021 12
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Conclusions

* Proposition of a new control approach for floating wind turbines (collective blade pitch control)
o Robust control, no modeling of the system is required
o Reduced number of tuning parameters (only 2)
o Low-computational capability requirement

e \Validation of this approach on an experimental set-up
o Improvement versus GSPI in terms of accuracy/tracking, without significative additional fatigue loads
o More intensive use of the input acuator (blade pitch angle)

Other/Future works

» Evaluation of the proposed control strategies in numerous other kinds of scenarios

e Control design in the frame of Individual Blade Pitch (IBP) control [Cheng and Plestan, revision in Ocean Eng., 2021]

* Introduction of electrical part of the system, and control design of the whole system [ Cheng and Plestan, Wind Energy, 2021]
* Application to the control in Region Il, and to control to the switching Region II-Region IlI.
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