Experimental study of the effect of second order wavemaker theory on the response of a large diameter monopile in irregular sea

Fatemeh H. Dadmarzi¹, Matthias Tonnel², Maxime Thys³, Erin E. Bachynski^{1,} Trygve Kristiansen¹

⁽¹⁾ Norwegian University of Science and Technology, NTNU, Trondheim, Norway
⁽²⁾ Leopold-Franzens Universität Innsbruck, Innsbruck, Tyrol, Austria
⁽³⁾ SINTEF Ocean, Trondheim, Norway

(WAS-XL: Wave loads and soil support for extra large monopiles)

Background/Objectives

- Larger offshore wind turbines -> longer eigenperiods and increased dynamic response to nonlinear wave loads
- Model testing:
 - Understanding hydrodynamic loads and structural responses
 - Validating numerical models
- Need to investigate uncertainties and effects of testing techniques
- How important is the second order wavemaker correction for the measured responses?

Outline

- Second order wavemaker correction
 - Theory
 - Implementation and experimental assessment
- Monopile testing
 - Experimental setup
 - Repeatability
 - Statistical results
 - Sample events of extreme responses

Wavemaker theory (piston-type wavemaker)

Bottom

Second-order wavemaker theory for irregular waves, Hemming A. Schäffer, Ocean Engng, Vol. 23, No. 1, pp. 47-88. 1996

NTNU

First and second order wavemaker motion

- First order wavemaker motion
 - Sum of harmonic components
- This motion results in generation of
 - Desired first order waves
 - Desired second order bound waves
 - Undesired second order spurious waves
 - And even higher order waves
- Second order wavemaker motion is added to counter the spurious waves

 $X_0^{(1)} = -i \sum_{n=1}^{\infty} X_n e^{i\omega_n t}$

Second-order wavemaker theory for irregular waves, Hemming A. Schäffer, Ocean Engng, Vol. 23, No. 1, pp. 47-88. 1996

Dispersion relation

Experimental setup wave probes

- Wave elevation measurement along 7m length of the tank centerline with a step of 0.08m
- Acceptable resolution for calculating 2D FFT

Dispersion relation: Gaussian spectrum Tp = 12s, Hs = 4m

Circular frequency ω

 \square Circular frequency ω

Monopile testing: experimental setup

- Instrumentation: 11 wave probes, water temp, wavemaker position, strain gauges and 6DOF force transducer
- Water depth: 27 m
- Monopile diameter: 9 m
- Automated test setup for increased statistics

NTNU

Decay tests

Repeatability of bending moment response at two largest events from 10 test repetitions

Repeatability of the phase of the responses at second natural frequency.

H_s 8.6 m, T_p 11 s

Coefficient of variation (COV) for the 10 largest bending moment maxima in 10 repetitions of one seed

Total QS F2 %⁴⁰ 200 H_{s} 8.6 m, T_{p} 11 s Event

Contributions calculated at the exact time of the maximum total moment.

□ NTNU

Effect of second order correction on the wave elevation

Mean spectrum of the mud-line bending moment response

Mean spectrum around the second natural frequency

 H_{s} 9.0 m, T_{p} 12.5 s

14

Mean spectrum of the mud-line bending moment response

 H_{s} 9.0 m, T_{p} 12.5 s

<u>d NTNU</u>

Exceedance probability of bending moment response for 10 realizations of the tests without and with second-order correction

10⁰

 10^{-1}

Test without correction

Test with correction

10⁰

10⁻¹

Bending moment response in the tests without and with wavemaker second-order correction

NTNU

Without correction

Without correction

Without correction

Without correction

Without correction

Without correction

Without correction

Bending moment response in the tests without and with wavemaker second-order correction

Frequency content of 20 extreme responses from a single realization

H_s 9.0 m, T_p 12.5 s

NTNU

26

Without correction

Without correction

Without correction

Without correction

Without correction

Without correction

Without correction

Conclusions

- Second order wavemaker theory (developed by Schäffer) for piston-type wavemaker motion in irregular waves
- Experimental observation of reduction in the second order spurious wave component for Gaussian spectra
- Experimental study of the effect of the presence/absence of this spurious wave on the response of a monopile
- Statistically, minor effect on response measurements
- However, affects individual breaking wave events and slamming loads

Thank you!

This work is part of the Wave Loads and Soil Support for Extra Large Monopiles (WAS-XL) project, funded by NFR grant 26818 and industry partners

