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Background/Objectives

 Larger offshore wind turbines -> longer
eigenperiods and increased dynamic response to
nonlinear wave loads

* Model testing:

— Understanding hydrodynamic loads and structural
responses

— Validating numerical models

 Need to investigate uncertainties and effects of
testing techniques

« How important is the second order wavemaker
correction for the measured responses?




Outline

« Second order wavemaker correction

— Theory
— Implementation and experimental assessment

* Monopile testing
— Experimental setup
— Repeatability
— Statistical results
— Sample events of extreme responses
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Wavemaker theory (piston-type wavemaker)
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Second-order wavemaker theory for irregular waves, Hemming
A. Schaffer, Ocean Engng, Vol. 23, No. 1, pp. 47-88. 1996




First and second order wavemaker motion

 First order wavemaker motion M
— Sum of harmonic components X(g1) = —i 2 Xneiwnt
n=1

« This motion results in generation of

— Desired first order waves
— Desired second order bound waves

— Undesired second order spurious M M e
waves X(Z) _ _{E* Anfim ei(wn_l_wm)t
— And even higher order waves 0 nm h
n=1m=2

« Second order wavemaker motion is
added to counter the spurious
waves

Second-order wavemaker theory for irregular waves, Hemming

A. Schaffer, Ocean Engng, Vol. 23, No. 1, pp. 47-88. 1996
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Experimental setup wave probes

« Wave elevation measurement along 7m length of
the tank centerline with a step of 0.08m

« Acceptable resolution for calculating 2D FFT

S 12.04m

2.5m

Wavemaker
* . Harp measurement Area . .




Dispersion relation: Gaussian spectrum Tp = 12s, Hs =4m
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Monopile testing: experimental setup

* Instrumentation: 11 wave probes, water temp, wavemaker
position, strain gauges and 6DOF force transducer RNA

« Water depth: 27 m ‘
* Monopile diameter: 9 m
« Automated test setup for increased statistics
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Decay tests T/
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Repeatability of bending moment response at two
largest events from 10 test repetitions
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Repeatability of the phase of the responses at second natural frequency.




Coefficient of variation (COV) for the 10 largest bending
moment maxima in 10 repetitions of one seed
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Effect of second order correction on the wave elevation
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Mean spectrum of the mud-line bending moment
response
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Mean spectrum of the mud-line bending moment
response
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Bending moment response In the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Bending moment response In the tests without and
with wavemaker second-order correction
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Frequency content of 20 extreme responses from a single
realization

x10%

w

Without correction

N

Bending moment [Nm]

o

Response at first natural frequency
Quasi-static response

n

w
T

Bending moment [Nm]
- N

o

Event H,9.0m,T,12.55

® NTNU



Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Snapshots of the wave at the model for the tests without and
with wavemaker second-order correction
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Conclusions

« Second order wavemaker theory (developed by Schaffer) for piston-type

wavemaker motion in irregular waves

« Experimental observation of reduction in the second order spurious wave

component for Gaussian spectra

« Experimental study of the effect of the presence/absence of this spurious

wave on the response of a monopile
« Statistically, minor effect on response measurements

 However, affects individual breaking wave events and slamming loads
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