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Introduction

» Highly variable wakes affects the performance of the

wind farm. Such effects can be studied using Lidar
measurements or numerical wake models like LES.

» LES runs are computationally expensive for practical
wind energy applications.

» Reduced order model can bridge between
computationally expensive CFD models and capturing
dominant scales and dynamics
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LES simulations

> 6912X2304X1459 m with grid size of dxdydz=6 m. The grid cell is
stretched in z direction after 800 m with the factor of 1.04,

maximum cell size is capped at dz_{max}=12 m. Model is run for
neutral atmospheric boundary layer. Two turbine configuration.

» 7670X3830X1600 m with grid size of dx=dy=dz=10 m. Model is

run for neutral atmospheric boundary layer. Three turbine
configuration and high frequency (5 Hz) outputs in few points.
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PALM LES setup: Three turbines

. Parent domain: A=10m

3500 4
« Child domain: A=5m 3000 | -
« Three NREL 5 MW wind turbines 2500
*  No wake-wake/turbine interaction. £ 2000
«  Free flow: U, = 12.5 m/s, true neutral. ” 1500
1000 -
« Simulations: 500
— No nested domain (coarse, 10m). o : —
. 1000 2000 3000 4000 5000 6000 7000
— One-way nesting. X, m
— Two-way nesting.
— 3 hours simulated, 2 hours of data at 5Hz 6.80 8.00 920 1040 11.60 12.80  14.00  15.20
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POD method

Let us erte T = (x y, z) for the p051t10n vector, u = (u,v,w) for the wind velocity vector, w
as the mean, and v/ = u — w as fluctuating velocity, all estimated from the LES data. The idea
behind the POD is to decompose the fluctuating velocity field into a number of deterministic
spatial fields, ¢;(x), modulated by random time-dependent weighting coefficients, a;(t):

I
.Mz
&

(1)

/// (@,)pj(x)dz and a;(t)a;j(t) = A;jdij, (3)

where the overbar denotes temporal averaging, and A; denotes the strength of the jth POD

mode. Here, \; > Ay > --- > Ay are real eigenvalues (calculated from SVD) so that a;(t)? = A;
for j =1,---,N. In the POD, modes are ranked by their energy.
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POD method

(a,b) POD spatial basis functions for mode number of 2
and 10, respectively; (c) Energy power spectra of aj for
j=1,15, 30, 45; and (d) cumulative energy of POD
modes.
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POD method and stochasticity

all dynamical information associated with temporal variation of wind is encapsulated in the
time-dependent weighting coefficients

Stochasticity of time

dependent coefficient
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We assume that the empirical probability density of a fits properly with a normal

distribution with an auto-correlation approximated by an exponential-decaying function
in time.

Assume that a; is a Gaussian process

Corresponding to 1

@;

The GP at /" model can be constructed based
on mean and a covariance function

a(t) ~ GP(uj, k;(t, 1) pui(t) =
PAGE 9 kj(tat,) =
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Stochastic POD: GP

Using above definition, at each mode we can produce a
random time series for our GP with a certain modal zero-mean
error, y=aj+e;. Note that we aim to use the GP to eaither
extrapolate or interpolate the stochastic process. Therefore, for
new set of random time series y’, we will have:

[ ] (o[ M0ty e ) -
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Stochastic POD: GP .
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Stochastic POD: SDE

the one-dimensional stochastic differential equation
for the evolution of a“; obeys the following general
form (1)

daj(t) = —aj(py —a;(t)) - dt + o/ 20 - AW (1),

where v is a driftless subordinator, p1; and o; are the mean and the standard deviation of a;(t)
at the j'" POD mode, respectively. The autocorrelation is governed by an exponential-decaying
function with decay rate of «; for the jth POD mode as follows:

p(7) = aj(t)a;(t +7) = e 7,
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To generate time series, we use Euler scheme in Ito calculus as:

a5 = S, a7)dt+ gt aAWT, AW = W — W~ N(O, Vi)

7=6.0
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(@) Wind time series at point (Xpes,Ypos) = (3231,831) m from LES; (b) ¢ s,
PAGE 13 autocorrelation of the data (red markers) and fitted exponential curve (black
line); and (c) two SDE-based realization.
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Stochastic POD: SDE versus GP

1400

1300

u component of wind from LES atday ™
t = 2.97; (b) reconstructed u by the >1100
standard POD scheme; (c) 1000
reconstructed u from the SDE-based 900
model; and (d) reconstructed u from 800
the GP-based model.
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Stochastic POD and turbulent box

Convert
to BTS
format T

///////
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Stochastic POD and turbulent box

Here, before decomposition, we exert a block

XZ; gz:; 23::; EZZ; associated with all observation
R.. =
v <w’u'> (w'v'> (w’w') (W'¢’>

() (ov) (W) (99 o

I : " WY
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a; = R3/ R32—a21a3/ 0 -6 Ime seres
ap, asy T T T T T T T
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Stochastic POD and turbulent box

convert

format

0.005 0.050 0500  5.000
f [Hz]

See [1] for more references
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Conclusions

» POD decomposition for two sets of LES experiments
were discussed.

» A turbulent box model was used to use LES results at
few points to be used in the structural analysis code

» More analysis with FAST model will be given.
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