Deep Sea Offshore Wind R&D Conference 2021

Early age movement in offshore structures with various bearing conditions

Prof. Peter Schaumann Joshua Henneberg, M.Sc. LUH, Institute for Steel Construction 14th January 2021, Trondheim

Outline

- Motivation
 - Early age movement
 - Joint research project
- Seastate simulations and boundaries
 - Monoplies

Leibniz University Hannover

Institute for Steel Construction

- Jacket structures OWT
- Jacket structures OSS
- Summary and outlook

Motivation

What is early age movement (EAM)?

- Movements in the material during curing
- Movements due to variable loading conditions

- Strength development during curing
 - E.g. sedimentation and segregation
 Bond defects

Joined research project GREAM

Early age movement in offshore structures with various bearing conditions Joshua Henneberg

Leibniz University Hannover

Institute for Steel Construction

Joined research project GREAM

Leibniz University Hannover Institute for Steel Construction

Motivation

Strict limit due to small amount of tests (primarily 35 years ago)

➡ Influence of horizontal movement not investigated

Offshore wind turbines

Converter platforms

Offshore wind turbines

Converter platforms

Offshore wind turbines

Converter platforms

Installation procedure

Positioning and leveling (using brackets "hydraulic jackups")

Installation weather window:

 $H_s = 0.5 - 3m$ T = 5.6 - 8.47s

Leibniz University Hannover Institute for Steel Construction

Geometry

Offshore wind turbines

Converter platforms

Offshore wind turbines

Converter platforms

Installation procedure

Positioning and leveling (using brackets " hydraulic jackups")

• Embracing (pile gripper, horizontal brackets, wedges and grout plugs)

GREAM

 $\Delta u_{rel} = 1.07 mm$

 $\Delta u_{rel} = 0.82mm$

Stiffness of bottom node important and thickness variation more effective than diameter variation

Summary

<u>Analyses of early age movement according to current guidelines for kind</u> and magnitude in different offshore wind structures

- Magnitude >1mm up to several milimiters (H_s = 3m)
- Monopiles: larger transition pieces

 toppling (-) local deformations (+)
- Increase structural stiffness is favourable
 - greater wall thickness better than greater diameter

structures lead to increasing EAM

Outlook

What is needed to withstand occurring problems?

Further experimental investigations on EAM

- Depiction of fluid grout resistance in on-bottom simulation
 - Submodelling and spring / damper approach

Thank you for your interest !

Prof. Dr.-Ing. Peter Schaumann schaumann@stahl.uni-hannover.de

Joshua Henneberg, M.Sc. henneberg@stahl.uni-hannover.de

Leibniz University Hannover Institute for Steel Construction Appelstraße 9A 30167 Hannover

https://www.stahlbau.uni-hannover.de/en/

Supported by:

Fed for and

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

