D NTNU | Norwegian University of Science and Technology

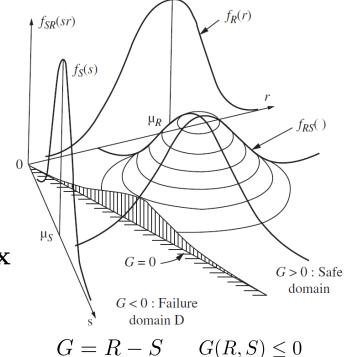
Reliability of an offshore wind turbine with an uncertain S-N curve.

S. Drexler, 2021-01-14 NTNU, Department of Civil and Environmental Engineering

Overview

- Introduction to structural reliability
- Uncertainties within the FLS
- Reliability analysis of an OWT MP structure
- Results and Discussion

Introduction to structural reliability

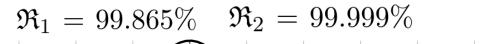

Reliability Analysis

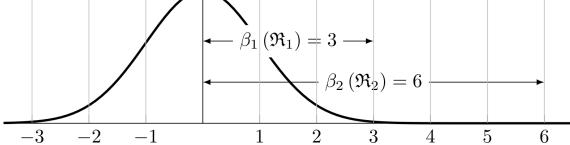
- Limit state violation $G(\mathbf{X}) \leq 0$
- Reliability $\Re(\mathbf{X}) = 1 p_f$
- Failure probability

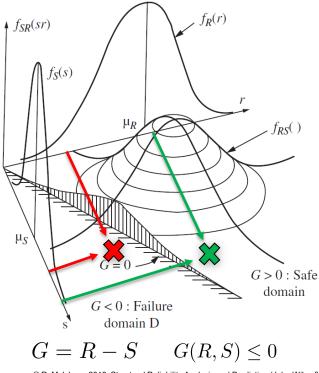
$$p_f = P[G(\mathbf{X}) \le 0] = \int \cdots \int_{G(\mathbf{X}) \le 0} f_X(\mathbf{x}) d\mathbf{x}$$

 p_f

- Determination of p_f
 - First-Order-Reliability Methods (FORM)
 - Monte Carlo Simulation (MCS)




© R. Melchers, 2018, Structural Reliability Analysis and Prediction (John Wiley & Sons)

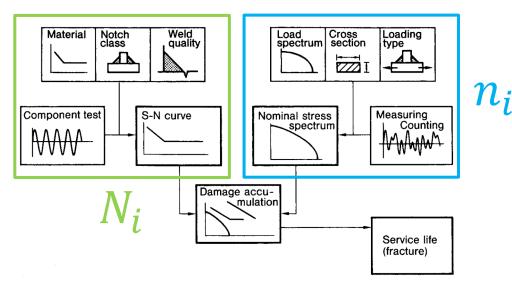

Reliability Analysis

- Principle of MCS
 - estimation by sampling $p_f \approx \frac{n_f}{N}$
- Reliability index β

$$\beta = \Phi^{-1}(\mathfrak{R}) = \Phi^{-1}(1 - p_f)$$

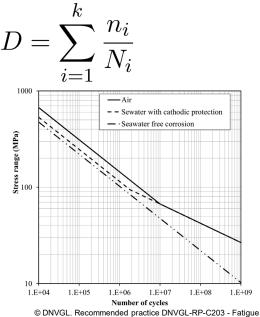
© R. Melchers, 2018, Structural Reliability Analysis and Prediction (John Wiley & Sons)

Uncertainties within the FLS

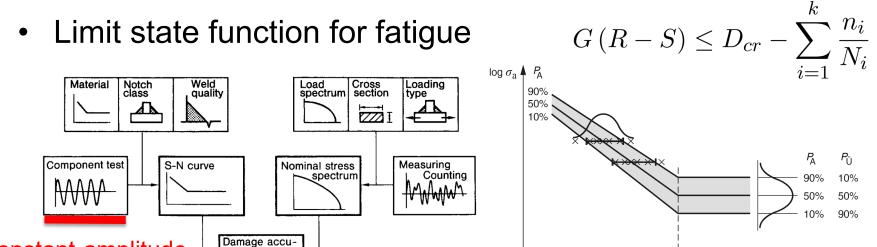


Fatigue evaluation

D = accumulated fatigue damage


 n_i

- k = number of different stress ranges
 - = number of stress cycles experiences at $\Delta \sigma_i$
- N_i = number of stress cycles to failure at $\Delta \sigma_i$
- Palmgren-Miner damage hypothesis


© D. Radaj, C. M. Sonsino, and W. Fricke, Fatigue assessment of welded joints by local approaches. Cambridge, England: Woodhead, 2006.

design of offshore steel structures. Tech. rep. DNVGL AS, 2016-04.

Uncertainties within the FLS

constant-amplitude mulation loading Service life (fracture) variable-amplitude loading

- JCSS recommends 2 r.v.
 - S/N curve
 - Palmgren-Miner

 \square NTNU

PA

90%

50%

10%

© M. Sander, "Sicherheit und Betriebsfestigkeit von Maschinen und Anlagen Konzepte und Methoden zur Lebensdauervorhersage," 2018.

 D_{cr}

ND

Pü

10%

50%

90%

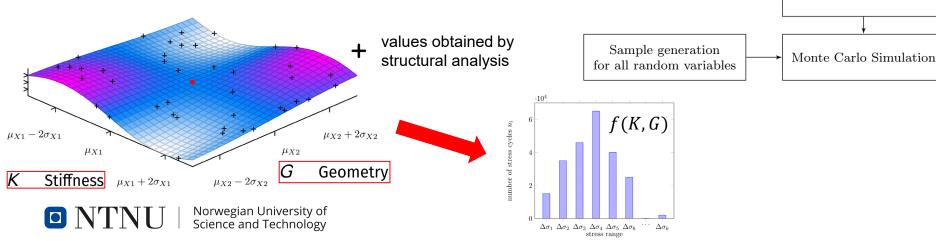
log N

Reliability analysis of an OWT MP structure

Objective

- Comparison of
 - Two r.v. approach
 - <u>S/N curve</u>
 - Palmgren-Miner
 - Single r.v. approach
 - Palmgren-Miner

	Parameter	Distribution	Mean μ	CoV
$ \begin{matrix} K \\ G \\ D_{cr} \\ S \end{matrix} $	Stiffness Geometry Miner sum S-N data	lognormal lognormal lognormal normal	1.0 1.0 1.0	$0.005 \\ 0.010 \\ 0.300 \\ \sigma = 0.2$


NREL 5-MW Baseline Wind Turbine			
Rating	5 MW		
Rotor orientation, configu- ration	Upwind, 3 blades		
Drivetrain	High speed, multiple-stage gearbox		
Rotor, hub diameter	126 m, 3m		
Hub height	90 m		
Cut-in, rated, cut-out wind speed	3 m/s, 11.4 m/s, 25 m/s		
Cut-in, rated rotor speed	$6.9~\mathrm{rpm},12.1~\mathrm{rpm}$		
OC3 Monopile			
Monopile diameter	6 m		
Wall thickness	60 mm		
Considered length	30 m		
Upwind shallow water site			
Water depth	21.4 m MSL		
Current normal, extreme	0.6 m/s, 1.2 m/s		
Weibull parameters wind	$A{=}10.61 \text{ m/s}, k{=}2.08 \text{ m/s}$		
Design assumptions			
Design lifetime	20 years		

Methodology

$G\left(R-S\right) \le D_{cr} - \sum_{i=1}^{k} \frac{n_i}{N_i}$

- Surrogate Model
 - Gaussian Process Regression (GPR)
 - Latin Hypercube Sampling (LHS)

 D_{cr}

MCS: 1,064,000

Stiffness

Geometry

Miner sum

S-N data

Initial deterministic fatigue analysis

with full set of LC

43,179 FLC (2,632 BLC)

LC reduction

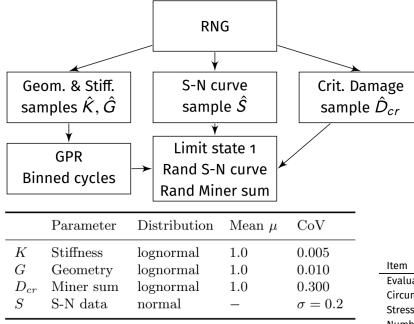
to 2,951 FLC (168 BLC)

 $\frac{1}{0.8} = 1.25$

Gen. 50 samples (LHS)

for stiffness & geometry

Fatigue analyses


50 sets with reduced LCs

Rainflow counting

GP implementation

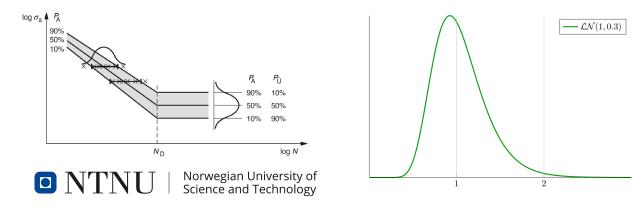
MCS implementation

$$G_1(K, G, D_{cr}, S) = \hat{D}_{cr} - \sum_{i=1}^k \frac{\hat{n}_i}{\hat{N}_i}$$

• S-N curve is constant

N	ΓN	U
N '	ĽN	L

Norwegian University of Science and Technology


Item	Amount
Evaluated nodes along the MP height	13
Circumferential evaluation points	60
Stress bins per evaluation point	270
Number of GPR models	210,600

Results and Discussion

Results and Discussion

		LSF 1: <i>G</i> ₁	LSF 2: G ₂	LSF 3: G ₃	LSF 4: <i>G</i> ₄
	Random variables	<u>S/N</u> <u>PM</u>	S/N <u>PM</u>	S/N PM	<u>S/N</u> PM
N _{total}	MC trials total	1,064,000	1,064,000	1,064,000	1,064,000
n _{failed}	MC trials failed	221	1,696	792	96
p_f	Failure probability	$2.077 \cdot 10^{-4}$	$15.940 \cdot 10^{-4}$	$7.444 \cdot 10^{-4}$	$0.649 \cdot 10^{-4}$
β	Reliability index	3.53	2.95	3.18	3.83

D NTNU | Norwegian University of Science and Technology

Thank you for your attention

Contact: sebastian.drexler@ntnu.no