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=  Floating Wind Potential
» Sea depth variation across the globe — majority of the resource in deep water (> 60 m)
@ e A PORTAL o

: .JV\;, V’}". .- g SHARE OF
: OFFSHORE POTENTIAL FOR
c?‘ggLRJ/ WIND FLOATING WIND
& Refine search RESOURCE IN CAPACITY
3. Proceed to checkout +60m DEPTH
Europe 80% 4,000 GW
USA 60% 2,450 GW

Source: WindEurope Floating Wind Vision
Statement 2017

Where we have data
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https://www.dhigroup.com/global/news/2017/09/new-bathymetrics-data-portal-delivers-quality-water-depth-data-online
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Floating Wind Cost Trajectories
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Global Floating Wind R&D to Date

» Heavy emphasis on concept exploration (large number of different topologies) to drive
down LCOE

» Focus on turbine / support structure design and installation and O&M (I0&M)

(traditional paradigm) | preliminary Critical
Design Design
Review Review

Design Uncertainty
Cost of Design Change

(multifidelity /
paradigm)

____/ : : Time

>
Concept Basic Detailed - Low rate ;
evaluation planning design CELILEE TR ‘ production | Manufacturing
- High-FideIity Models R
Semisubmersible Tension leg Medium-Fidelity Models o :
platform (TLP) [ e ———————— ¢ ______________________Traditional Paradigm

Medium-Fidelity Models High-Fidelity Models

Multifidelity Paradigm

Source: Barter et al 2020
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Global Floating Wind R&D to Date

« Still a significant potential for reducing LCOE for floating
systems focusing on individual turbine/support structure
units:

— New concepts still coming

— Systems engineering approaches picking up steam
(including co-design with controls)

» Large scale demonstrations for 10+ MW machines on

their wa
y Source: EU FLAGSHIP project led by

Iberdrola with DTU Wind involvement

« Small-scale commercial projects in development and
larger projects coming down the pipeline

Jan. 15t 2021
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Global Floating Wind R&D Needs

3 INTERNATIONAL ENERGY AGENCY

Implementing Agreement for Co-operation in the Research,

» Moving from floating wind demonstrators to floating wind farms will e =
require research in several key areas: Topical Expert Meeting 499 on
Floating Offshore Wind Array
— Mooring system analysis andt farm level including Challenges and Opportunities
consideration of anchor types. BRERor sharing, failure modes and sy 15,178 20,202
reliability, risk assessment and more Oniine meeting

— Electrical collection system nd effects of dynamics on

electrical cables (as well as integrated analysis with mooring system
for full plant, and also substation and export)

— |O&Mistrategiesffor full floating wind farm and theifjoptimization
@] NRE L @)MaREI Technical Lead and Host:

Cian Desmond — MaREI (UCC)

Matt Hall, Matt Shields — NREL

Principle (tfcoycs  Raron Smith, Nl Dindarova.. Pincile Powar
Design opt|m|zat|on or full floating wind farm accounting for support T
Operating Agent:
PICTOTES, Mooy, electrical collection system, controls (i.e. co- PLANAIR 32 paar

design), and more
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Fixed-bottom wind farm design

* Integrated design of a wind farm involves a full levelized cost of energy (LCOE) perspective

Wind
turbines
and
Installation

Z % p.a. €/\ﬂ/

Rotor diameter,
Price of turbines, hub height and mean wind
foundations, road other physical speed + site
Lifetime of project Cost of capital construction, etc. charactenstics charactenistics
1 | J
|
g €
Operation &
Capgfl oofls | maintenance
e costs per year

GO N

| Annual energy

Total cost per year production
€/KkWh

Cost of energy
per Kwh
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Fixed-bottom wind farm design

* Modelling of LCOE is complex and involves a large scope and timeframe with many sub-systems and
disciplines including both physical and cost modelling of the system

Turbine

— Significant couplings Design Operation
o Turbine Structure Turbine Performance Support
E.g. farm layout = support Control

. Rotor Rotor
structures, collection system, il
Infrastructure

energy production, IO&M S— —— Repairs &
Drivetrain Drivetrain Installation & Logistics
Structure Efficiency Logistics
+ E.g. control strategy > o oo, e e o
. . . i reliability design
energy production, reliablity

Turbine Component Costs Farm Costs Farm Operation

Opéfatlons & Energy Production
Maintenance

CAPEX & System Cost Analysis

OPEX
LCOE

Jan. 15t 2021 DTU Wind

— LCOE modeling a constant
balance of fidelity
(computational cost) and

Balance of
Station Costs

| Manufacturing
& Transport

accuracy (believability) Turbin CAPEX
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Fixed-bottom wind farm optimization

* IEA Wind Task 37 reference wind farm [ S
integrated optimization of offshore fixed- @- r ' —p
bottom wind farm accounting for: 1 1
. m,w. Ao AEP === Apro AEP
— Energy production @ |
— Support structure costs m— g
— Electrical collection system costs - — e
R o seemes
@ ontimisation - _m -
. - Analysis . — -
- 4 Design variable w I u!
I -7\' " I/O variable I
41 ’ - N B LTE E
2 ‘

Wind plant layout optimization workflow for an offshore
reference wind plant (Source: Sanchez Perez-Moreno et al
2017)

Jan. 15t 2021 DTU Wind
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From fixed-bottom to Floating wind

» Concepts are numerous and will perform better or worse in certain operational environments

« Concept selection has significant influence on farm design including mooring, electrical
collection system & [O&M

Advanced Spar -... Asymmetric Floa... Blue-H Semi | B... )amping Pool - ... jvance ar -... Asymmetric Floa... Blue-H Semi | B... lamping Pool - ... SeaTwirl 2 | Se...

Toda Spar | Tod... Tri-Floater | G... Triple Spar | D... TrussFloat | Di... V Shape Semi - ...

TR

Windfloat | Pri... Windfloat Gen 2... Windfloat Gen 3...

| |
y
N

Source: Quest Floating Wind Energy https.//questfwe.com/definitive-quide-to-floating-wind-concepts/
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https://questfwe.com/definitive-guide-to-floating-wind-concepts/
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Floating wind farm design
» Concept choice impacts many elements of LCOE:

— AEP: individual turbine energy productions, wakes, available control strategies

— CAPEX: support structure design and cost, mooring and anchor system design and

cost, collection system design and cost, transportation, assembly, installation and
overall logistics

— OPEX: service strategies and logistics, reliability and unplanned maintenance /
component replacements, available control strategies

— Finance: risk profile, plant lifetime

— Revenue: energy, capacity, services — integration with storage, PtX, etc

Jan. 15t 2021
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Floating wind farm design

i

* Many architecture and design decisions

Turbine Platform

Semisubmersible

Barge

Spar
Semi-submersible
Tension-leg platform

Vertical-axis turbines
Horizontal-axis turbines
Multi-rotor turbines
Upwind/downwind configuration

Jan. 15t 2021 DTU Wind

Tension leg
platform (TLP)

Mooring System

. suction
. gravity-ins:
ica

pile
talled (drop) anchor
ertical load anchor

Anchor type

Line number per turbine
Shared / unshared anchors
Inter-turbine lines’




Floating wind farm design

* Many architecture and design decisions

Electrical System

Lazy Wave \/“\__
rh—i-—,’%*r:;?; S

Tethered Lazy Wa\Q/)R.;\Sse Pliant Wave

.

— == =
Steep-S

- A

Pliant Wave \/\
INS

» Dynamic cabling configuration

» Substation and export cable
configuaration

Source: Victor et al 2017

DTU Wind
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Installation & O&M

INSTALL TURBINES
AND SUBSTATIONS

SURVEY INSTALL
FOUNDATIONS

Cable plough

PERFORM OPERATIONS
AND MAINTENANCE

Vessel types
Installation procedures
Overall IO&M strategies

Source: Clean Energy Group 2017

Other Technologies

%l ) ~> 2 o

e -

Electricity storage
Power-to-x
Other generation
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Floating wind farm design

* Many architecture and
design decisions

 And not one-to-one

» Very challenging mutli-
system multi-
disciplinary design &
optimizationo problem!

Jan. 15t 2021 DTU Wind

Turbine Platform

Tension leg

platform (TLP)

INSTALL
FOUNDATIONS

INSTALL TURBINES
AND SUBSTATIONS

ERFORM OPERATIONS
AND MAINTENANCE

Mooring System
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Example: shared versus unshared anchors

* Mooring and anchoring theory and design well-
defined for O&G industry

« Mooring optimization has been applied to floating b
offshore wind for single systems

 Sharing of anchors is a potential pathway for LCOE | 4
reduction of a floating wind farm

ol ‘
—
. H . typical mooring points (i
« Study considers using less expensive unshared ypicaimootng
. . . 1. dead weight
drag anchors with shared anchors using suction 2 3:2525&% \
pileS (Madsen 2020) g ;L::tvii(:;iﬁ!falled(drop)anchor '\' R
6. vertical load anchor "‘
M-20 L Y 17

Source: Vryhoff Guide to Anchoring 2018
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Patterns exploration
¢ i ¢ z ¢
| | | |
- Using shared anchors requires use of certain patterns. A A A A A 5
4 N7 // g / NG T | | G
* The investigation carried out on pattern with 3 T T
mooring lines per anchor and 3 mooring lines per 4
turbine ey 4 2N
d; \ﬁ// \d-,/\;b/ \;b
* As the farm size increases, the ratio of | l 3

anchors/turbine decreases

3.00 A

no. of WTGs
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Single mooring line optimization

» Single line mooring optimizes the overall cost of mooring by varying the chain diameter and length

» Optimized mooring line cost increases with increasing depth and footprint (with decreasing
sensitivity for larger footprints)

Gradient along rr axis

1200 A
-0.5
1000 A
800 E 1.0
2 T
& -~
: m
§ 600+ = D=75[m]
2 15 D=100 [m]
o D=125 [m]
400 - D=150 [m]
D=175 [m]
-2.0 D=200 [m]
200 A D=225[m]
D=250 [m]
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
rf [m] rf [m]
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Farm optimization — spacing versus
mooring/anchoring cost

» Optimization conducted for inter-turbine spacing coupled with use of shared or unshared anchor systems
— Total cost of mooring system = cable costs + anchor costs + supply and installation costs

« Shared anchors preferred for higher diameter spacings and optimum at 10 diameters (sensiitive to cost

Cost for D=100 [m] AEP
----- Shared:Supply
700004 W\ 77 Drag:Supply _ 1650 -
—=—=- Shared:Supply and install
—=—- Drag:Supply and install 1600 -
60000 - —— Shared:Supply, install and SSI per anchor
—— Drag:Supply, install and SSI per anchor 1550 A
™)
=
+ 50000 - = 1500
S =
5 S Laso — D=75[m]
S 40000 D=100 [m]
—— D=125[m]
1400 1 —— D=150 [m]
30000 - —— D=175[m]
1350 - —— D=200 [m]
D=225[m]
20000 4 1300 A — D=250 [m]
4 6 8 10 12 14 2 a 6 8 10 12 14

no. rotor diameters turbine spacing no. rotor diameters turbine spacing

Jan. 15t 2021 DTU Wind



 w—)
q
c

i

Jan. 15t 2021

Farm optimization — spacing versus
mooring/anchoring cost

3.0 4

2.5 A

2.0 A

[€/Mwh]

1.5 A

1.0 1

0.5 A

Optimization of mooring cost per unit energy depends on depth (range of 8 to 14
diameters wiith increasing depth)

Optimization for overall internal rate of return favors even higher spacing (though other
sianificant costs — i.e. electrical system - are neglected)

Cost of mooring per energy IRR
D=75[m]
—— D=100 [m]
— D=125[m] 14
—— D=150 [m]
—— D=175[m]
— D=200 [m] 13 -
—— D=225[m]
—— D=250 [m] —
X
12 - — D=75[m]
D=100 [m]
—— D=125[m]
11 A —— D=150[m]
—— D=175 [m]
—— D=200 [m]
D=225 [m]
10 A —— D=250 [m]
2 a 6 8 10 12 14
2' z‘t é é 1'0 1'2 1'4 no. rotor diameters turbine spacing

no. rotor diameters turbine spacing

DTU Wind
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Summary

» Floating wind resource potential and cost trajectories provide basis for a very bright future
for floating wind development

« R&D in floating wind up to now has largely focused on concept innovation and exploration
and demonstration of individual units

» Floating wind farm development requires significant R&D

— Design of wind farms involves a large number of trade-offs affecting overall system
performance and cost

» Many innovation pathways towards reducing overall floating wind farm LCOE
— Example of shared anchors just one potential pathway to LCOE reduction
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Next Steps

» Extension of optimization work on shared and unshared anchors
— Improved modeling of mooring and anchor system and costs
— Different patterns — number of lines per turbine, lines per anchor, etc
— Incorporating more sub-systems — i.e. electrical collection system

» Expert workshop on floating wind farm design and optimization
— LCOE impacts and science and engineering challenges
— Hosted by DTU and TU Delft online (end of Jan. / early Feb.)

Jan. 15t 2021
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