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Introduction and background

>

>

Settin? and maintaning dense obs. are practically impossible.
Therefore, numerical models with ability to provide consistent
spatiotemporal predictions are desirable.

In order to provide accurate short term forecast, we need to
develop more reliable numerical weather precdiction (NWP)
models.

Data assimilation can improve the initial and lateral boundary
conditions of the mesoscale model and significantly reduce the
negative spin-up effect.

DA with Lidar is more challenging compared to other traditional
meteorological measurements.
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Data d esc ri pti O n topography map of the simulation

Windcube 100s wind Lidarin pulsed Doppler Beam
Swing (DBS) collected from May 2015 to
September 2016 at FINO1 offshore platform. In this
study, we focus on 5 days between 1-5 July 2015
where we have a clear low level jet event.
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Data description

Lidar measurements enable  wind
information at higher altitudes.

Data availability in this measuring
technique reduces with increasing altitude
due to a decrease in aerosol density
required for the backscattering of the lidar
signal.

High-frequency fluctuations cannot be
properly measured by lidar.

Estimated turbulence intensity from Lidar
correlates with sonic turbulence data at
lower altitudes
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Taylor Diagram FINO1 - wspd, Range gate: 2 - 100 m LAT, July 2015
Taylor Diagram FINO1 - wspd, Range gate: 1 - 70 m LAT, July 2015

Data description

Comparisons between cup-anemometers
at 70 m and 90 m showes very good )
agreement
Comparison between 10-min averaged lidar and ref.
wind at 33 m heights
- T 360 FINO1 - wdir, Range gate: 1, July 2015 360 FINO1 - wdir, Range gate: 2, July 2015
§ é: 180 *2 ) ] E% 180 | 3 ) ]
% 1% g + HM;E.=B.54 % bl + HM;E.=17.03
é 90 BIAS =6.52 4 gz 90 | BIAS =8.04 4

FINO1 10-min wdir, z =70 m

FINOT 10-min wdir, z =90 m

The continuous line represents the linear regression of the data



Initial and boundary conditions of all simulations are based on the
ERAS reanalysis data set by the European Centre for Medium-Range
Weather Forecasts.

Turbulent kinetic energy (TKE) closure within the ABL was achieved
by using the Mellor—Yamada—Nakanishi—Niino (MYNN) 2.5 scheme.

The Noah-MP land-surface model and MYNN surface layer scheme
are used.

The Rapid Radiative Transfer Model (RRTM) longwave radiation and
Dudhia shortwave radiation scheme are used.
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Mesoscale modelling'and data sve
assimilation

Validation versus reference observation: Multi-
domain WRF simulations, a Taylor Diagram for
the WRF simulation at 9000 m resolution vs.
cup-anemometer data at 90 m hight for hourly
wind speed.
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Red represents WRF (no assimilation)
simulations, and blue represents time series of

reference measurement at 90 m height.
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Data assimilation

Local obs.
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The conventional observations consisted of data from Meteorological Assimila-
tion Data Ingest System (MADIS) combining data sources from the National Ocea-
nographic and Atmospheric Administration (NOAA) as well as from non-NOAA so-
urces. MADIS contains observations from surface METAR reports, radiosonde soun-

dings, wind profilers, satellite wind, and dense surface observations from MesoWest.
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The following equation represents how the nudging term can be added into
the governing equations:

(i) NUDGING (f)—f = F(A) + GAWa(A, — A), (1.1)

where F'(A) is the normal tendancy term due to physics, advection, etc. W, the
additional limits in time or space to constriant further nudging, and G4 denotes a
time scale that control the strength of nudging.
(i) 3DVAR

In this method, previous forecast, observational data and their errors are used
to produce the analysis increments 2¢ which will be added to the first guess z° pro-
viding an updated analysis. This method aims to provide optimum values for the

atmospheric state field 2* at any time by minimizing following cost function:

J@) =1+ =3 (e =B @ -2 + -y O+ P) -y, 12

N =

the analysis » = 2 is an estimate for the true atmospheric state based on background
data (previous forecast, z") and observations (y°). B, O, and F denote the covariance

matrices for background, observation, and representativeness, repectively.
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In this work we stuc[y two types

of assimilation

Data assimilatin
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Data assimilation

Since nudging add nonphysical forcing term in prognostic equations,
the tuneable parameters, nudging interval, and the number of altitudes
at which nudging takes place are important.

Here, we use 6-hour nudging for all altitude between 75 m and 900 m.
This may constrain the simulation. Note that nudging is performed over
available data.

3DVAR simulation has been done 6-hourly,
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Data assimilatin

» Successful assimilation in variational DA
depends on quality of two covariance matrices. ——
Here, we focus on the background error. -

> Effect of nonlinearity appeared in the cost
function:

J(x) = 5 (=) B (x = 3) + 5 (y ~ H(x) 'R (y ~ H(x))

» The domain-dependent background error
covariance can be estimated using the NMC B = (x, — z;)(x, — x;)7
method with T+24h minus T+12h forecasting
difference.




Model uncertainity::Background ,e¢
error matrix

Control variables are: stream function, velocity potential, horizontal wind component along x-axis, and relative
humidity.

The input data from WREF forecasts between 1t July 2015 and 4 July 2015 are used to statistically generate
the background errors.

rh psi chi_u
40 - a0 - 40 g o 40 o
e
<= 30 -5 30 = 30 - 30
[} ©
g & g 3
= — - —
L 20 - -3 20 gau— -§m-
=} =] 1
= = ]
—>¢—-m=5 - = {--¢—-m= = {-->¢--m=5
10 Jeesem=4 10 J=eeem=4 1=—S=—m= |[——C—m=4
eomme=3 =3 10 e [ 10 Jeseommas
e =2 | ——pm——m=2 {==——im——m= {=——tm——m=2
| i1 ——m=1 = J—m=t
T TR T T T T i T T T T = T T T T RS T T
0.8 0.4 0.4 0.8 08 0.4 -0.0 0.4 0.8 -0.8 0.4 -0.0 04 0.8 0.8 0.4 0.0 0.4 0.8
Eigenvector Eigenvector Eigenvector Eigenvector
psi chi_u tu rh
L L L L L L L 40 ' L L
3.0%x10" - 0.030
& 8.0%10' ——— F s —f— . —_—— —_—t—
2 & 25%10" F N 4o —~ 0.025
. N
2 2 % :
I soxi0” FT 2oxi07 3 s = o020
E E 2 o
D 20 - =2
@ @ 2 =1 ‘T 0.015
S 2 S 15x10 =
= 4.0x10"% F= 2
g g H 5
5 $ 1.0x10" Iy .2 0.010
=24 12 (=2} D 1.0 - w
g 20x10% - o w
0.5x10'* 0.005
0.0x10'"2 0.0x10'2 - 0.0 T ¥ 0.000 ¥
10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
Vertical Mode Vertical Mode Vertical Mode Vertical Mode




Model uncertainity: Background ¢®®

error matrix

Comparison between cyclic forecast for horizon of 1h and
cycle length of three hours. The regional BE is just an example
based on 5 days forecast procedure as mentioned earlier (just
to highlight the importance of this matrix)
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Conclusions and further works

>

>

Lidar data measured at FINO1 platform has been assimilated in WRF
using two DA techniques.

Tentative results suggests that nudging provides reliable agreement
versus observations. Deviation between numerical results and obs.
can be reduced if appropriate site-specific values are set.

Variational DA is sensitive to the choice of BE and observational error
matrices.

Regional BE was calculated for the study area just for the sensitivity
analysis.

Further validation-verification needs to be conducted to improve the
quality of DA techniques.
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