

Wind resource assessment uncertainty for a TLP-based met mast

Dimitri Foussekis, Fragiskos Mouzakis

19th km Marathon Avenue, GR-190 09, Pikermi, Greece

Why a TLP Met Mast ?

- Cost effective solution for deep waters
- Stable platform mature TLP technology
- Re-deployable
- Multiple uses (radar, scanning lidar)
- Established configuration for WRA (non hub height met mast + lidar)
- Continuous verification of wind data (cups/sonic vs lidar)
- Smaller structure than Hub-Height masts (no flow blockage)
- High data availability
- Relatively protected equipment

About the campaign

- Offshore Site location
 - Aegean Sea, NE of Makronissos island
 - 65m depth
- FloatMast TLP Met Mast
 - Platform height: 10m a.s.l.
 - 30m Carl-C self-supported met mast
 - Primary anemometer at 44m a.s.l.
- Instrumentation (WRA related)
 - ZephIR 300M lidar
 - 1 x Thies 3D Ultrasonic anemometer
 - 4 x Thies Clima First Class Advanced-X cups
 - 2 x Thies Clima First Class wind vanes
 - Thermo-hygrometer, barometer, sea temperature

Instrumentation

- Wave radar
 - max. & significant wave height, wave period (MIROS SM-140)
- Motion sensors (IMUs)
 - primary at 40m a.s.l. (Xsens Mti-G-710)
 - platform level
- 'Blue' sensors
 - salinity, dissolved O₂ , chlorophyll-A
- Platform dynamics
 - 4 x tension leg forces
 - central pylon bending moments & torsion
 - tank water level & pressure
- Dedicated DAQ system
 - 2 x CompactRIOs, 113 signals, online monitoring
 - Synchronization at FPGA level (µsec accuracy)
- Power Autonomy
 - Solar panels, wind turbines, fuel-cell, batteries

2020-01-07 17:38:46

Wind regime

Measured quantity	v Value	Height [m] as
Mean 10min wind speed (cup anemometer)	7.9 m/s	44
Max. 10min wind speed (cup anemometer)	28.8 m/s	44
Max 1sec-gust wind speed (cup anemometer)	35.3 m/s	44
Uncertainty of mean wind speed (cup anemometer)	0.18 m/s	44
Mean turbulence intensity at 10m/s (cup anemometer)	8.3 %	44
Air temperature range	4.5 to 31.8 °	C 38
Mean wind shear (lidar)	0.06	30-185
Availability of wind data (after filtering)	96.4 %	
Campaign duration	366 days	

Wind speed (m/s)

Wave regime

TLP angular response

Max. inclination angle of met mast top $(40m) < 1^{\circ}$.

Pitch angle average value is up to 0.5° over static value and its variation (σ) is limited to 0.15° .

Roll angle average value is up to 0.3° over static value and its variation (σ) is limited to 0.1° .

TLP translational response

। ନେ 🕫 🔁 🥭 🔚 🕾 🚺 🛸 🌖 🖩 🚉 🧔 🐵 🖪 💆

TLP's anemometers verification : top cup vs onboard lidar

Total RSD wind speed uncertainty = 1.68% (as per Annex-L.3 of IEC-61400-12-1 Ed.2017)

Uncertainty assessment due to TLP motion

- Comparisons between TLP-onboard and onshore lidar
 - Initial ZX300M performance verification
 - Side-by-side operation before deployment
 - Uncertainty assessed by inter-comparisons on site
- Wind Tunnel Experiments
 - Cup/sonic/vane submitted in various motion cases
 - Establish uncertainty values

Initial side-by-side correlations before deployment

4,5 months of common operation

Lidar wind speed comparisons

ZX300M's uncertainty increases by ~ 1% (Ref. lidar onshore: Windcube) Best results at higher heights (topography effects vanish, approaching measuring volumes)

Lidar wind direction comparisons

FloatMast RSD accuracy assessment by KPIs*

		Acceptance criteria		
КРІ	Definition	Stage2	Stage3	FloatMast's RSD
Xmws	Mean Wind Speed – Slope	0.97-1.03	0.98 - 1.02	1.02
R2mws	Mean Wind Speed – R ²	> 0.97	> 0.98	0.996
Mmwd	Mean Wind Direction – Slope	0.95 – 1.05	0.97 – 1.03	1.00
OFFmwd	Mean Wind Direction – Offset	< 10°	< 5°	2°
R2mwd	Mean Wind Direction – R ²	> 0.95	> 0.97	0.99
OSA _{CA}	Overall System Availability – Campaign Average	> 95%	> 97 %	98.4 %
OPDA _{CA}	Overall Post-processed Data Availability	> 85%	> 90 %	90 %

* Carbon Trust Offshore Wind Accelerator "Roadmap for Commercial Acceptance of Floating Lidars, Version2.0, October 2018

Wind Tunnel experiments

Static calibrations compared to oscillating sensors.

Oscillation parameters :

Velocity variation (σ_{U})	0.1 - 0.8	[m/s]
Period (T)	0.8 - 15.0	[sec]
Max. displacement	0.95	[m]

CRES Wind Tunnel for accredited anemometer calibrations

Wind Tunnel results

	Cup anemometer		Sonic anemometer		Vane	
Wind speed	Calibration	Mean deviation	Calibration	Mean deviation	Calibration	Mean deviation
range [m/s]	Uncertainty [m/s]	due to motion [m/s]	uncertainty [m/s]	due to motion [m/s]	Uncertainty [deg]	due to motion [deg]
4-16	< 0.11	0.01 - 0.05	< 0.08	0.01 - 0.07	1	< 0.5

Assumed wind speed uncertainty for TLP met masts : $(0.08 + 0.005u) / \sqrt{3}$ [m/s]

Conclusions

- An innovative campaign with a TLPbased met mast, the 1st in the world, was completed successfully, in compliance with the highest requirements.
- TLP-based met masts represent an excellent configuration for direct wind measurements.
- Minimal motion effects on wind measurements: the additional uncertainty of mean values due to the TLP motion is ≤ 1%.