

Optimised grid for offshore wind connections

Harald G Svendsen

SINTEF Energy Research

harald.svendsen@sintef.no

Content

- The need to consider uncertainties
- Optimisation approach
- Examples
- Outlook

North Sea electricity grid – not a new idea

Offshore wind energy and grid will be built step by step

We seek grid solutions that are good both in the near and in the long-term – for developers and the

society as a whole

Need to consider uncertainties

Step-wise development

- Wind farms built at different times.
- Always uncertainties about what happens in the future
- Some decisions are here-and-now, others can wait

Some information is by nature uncertain

• Weather, climate, energy prices, world economy, ...

We are interested in solutions that are good for a range of likely future scenarios, not a solution that is optimal (only) for a single scenario

Sensitivity analysis vs optimisation with uncertainty

Space of parameters

Space of solutions

Not clear how to "average" the results to find the best solution...

Optimisation with uncertainty

Optimal solution is irrelevant if it is based on wrong assumptions, so we consider a range of parameter values

Optimisation problem

Main variables

- Which connections to build (grid layout) (integer)
- Cable capacities (continuous)

Considering

- A set of candidate investments
- Different operating conditions (variable generation and demand/power prices)
- Linear cost model (linear function of power rating)

Implementation

• Python package using Pyomo/PySP: PowerGAMA/PowerGIM

(S) SINTEE

Example 1: North Sea wind farm cluster

wind farms and candidate connections

SINTEF

2 stages – 3 scenarios

With uncertainty Without uncertainty Stage 1: Here-and-now: Stage 1 Stage 1 0 0 0 ***** UK 220+ • 1902 509 2418 2000 2000 ***** 2000 2000 yellow = AC numbers show 1618 white = DCcapacities in MW Stage 2: Future decisions: Scenario 2 Scenario 3 Scenario 1 Stage 2 1425 1032 1032 1032 <u>152n</u> 2000 50 1542 1542 1542 O SINTEF 0 GW 1.2 GW 1.2 GW 0.6 GW

Benefit of optimising with uncertainties

Total cost difference compared to case without uncertainty (which assumes scenario 1 is realised)

Large benefit if scenario 2 or 3 is realised

Slightly sub-optimal if scenario 1 is realised

Expectation value (average) = -81

Example 2: Oil and gas field electrification

- Reducing emissions from oil and gas *extraction*
- Renewable power from shore
- Some 50Hz and some 60Hz systems, both AC and DC transmission relevant
- Short (remaining) lifetimes

🕥 SINTEF

Full electrification of Norwegian oil and gas (preliminary study)

Clustered oil and gas facilities, wind farms, candidate power cables

50 Hz clusters are **blue**, 60 Hz clusters are **brown**, Wind farms are **turquoise** with a cross

14

SINTEF

BaltHub project: Interconnecting the Baltic Sea countries via offshore energy hubs

Project starting Jan 2021

Research questions:

- Are Baltic Sea energy hubs a cost-effective solution for driving green transition in Baltic Sea countries? How is this impacted by key input parameters?
- Do large-scale wake losses jeopardize the cost-effective buildout of offshore energy hubs in the Baltic Sea?
- Are the offshore hubs beneficial in interconnecting the Baltic Sea region's countries?
- How can optimal offshore infrastructure investment decisions be made here-and-now when the development towards 2050 is uncertain?

DK

Outlook

- Thorough analysis of what are the most important parameter uncertainties
- Assess more complex scenario trees (using parallel computing)
- Interesting cases
 - North Sea hubs Sørlige Nordsjø 2 wind farm area (Norway)
 - Baltic Sea Hubs BaltHub project

Concluding remarks

- High costs, long planning times and long lifetime makes multistage optimisation with uncertainties highly relevant
 - More economically robust decisions
 - Increased computation times
- Caution: "Optimal solution" is only optimal if input data is accurate

https://xkcd.com/1691/

Technology for a better society