
DRYM: a DRY Mate connector dedicated to floating wind: Focus on long term behaviour of sealing system

Dr. Mathieu PRISER, Deepwind Conference, Trondheim, January 2021

DRYM HISTORY

DRYM concept based on Tidal Experience

For in line connectors, a quadrant is requested to ensure no overbending of cables during installation

DRYM II: Partnership with Nexans Euromold

Design of connector delivered on Microsoft project (Natick) → TRL 7

https://natick.research.microsoft.com/

DRYM IV: DRYM 66kV for Offshore Wind

4_m

DRYM I

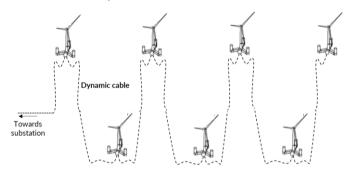
Proof of Concept: Development of an innovative sealing system and U-shape connector

Connector OK after 24 months
TRI 8 Optimization of the design Evaluation of long term durability of the

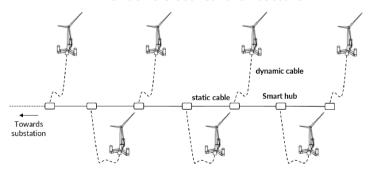
DRYM: Floating wind application

Context of study :

New needs for electrical grids requested for floating offshore wind


– Issues :

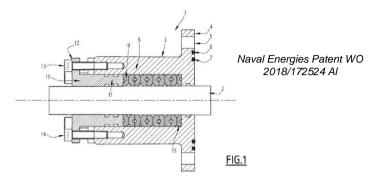
 Standard electrical architecture derived from Bottom fixed mindset / not adapted to floating wind


Objectives :

- Mitigate the risks hold by dynamic cables by implementing new electrical architecture more compliant with floating wind constraints (so called fishbone architecture)
- Introduce subsea technologies in the subsea IAC grid and ensure long term durability of these technologies to allow take off of these optimized electrical architectures

Daisy chain electrical architecture

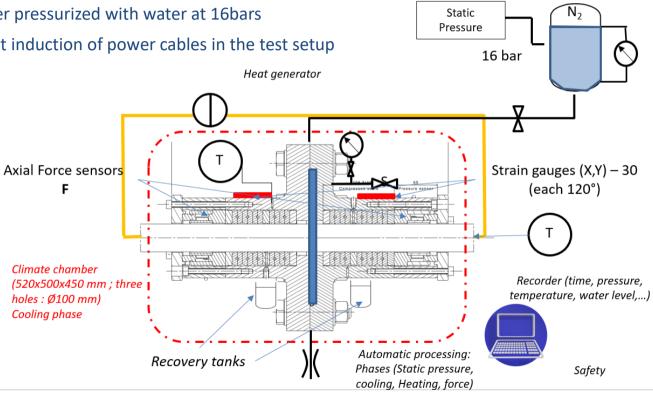
Fishbone electrical architecture


Agenda

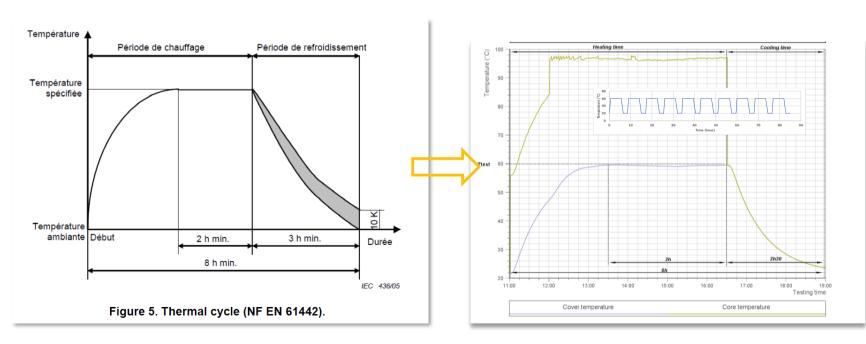
- DRYM History / Floating Wind Application
- Sealing solution for DRY Mate connector
 - Presentation of rubber packing
 - Design of a test set-up
- Evaluation of sealing long term behaviour
 - Description of test bench and instrumentation
 - Mechanical behaviour of seals and modelling
 - Comparison between experiment and numerical results for sealing performance
 - Accelerated ageing tests
- Conclusions

Sealing system and test setup

- Sealing system :mechanical cable gland system
- Presentation of rubber packing
 - Stacking of machined EPDM V-seals up side down
 - Tunable compression stroke to adjust mechanical gap between cable and seal
 - Submitted to Heat Cycles during electrical production of the wind farms
- Design of a test set-up
 - Test setup combining thermal cycles and pressure
 - Multiphysic monitoring: Axial stresses, temperatures, leak rates, ...



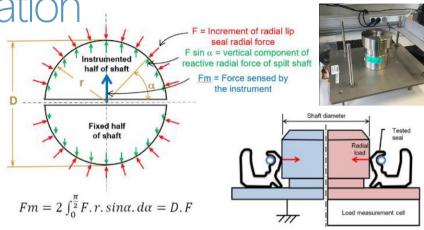
Description of test bench and instrumentation

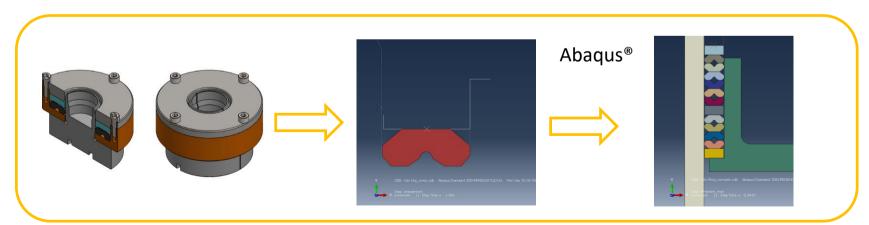

- Sealing barrier pressurized with water at 16bars
- Electrical heat induction of power cables in the test setup

Leakage measurement (water level by differential pressure transducer)

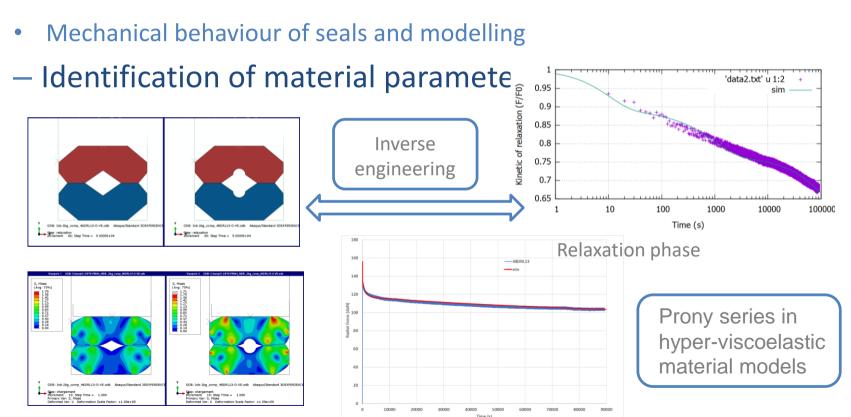
Thermal Cycles according to IEC EN 61442

- 5h heating, 3h cooling for each cycle
- 126 Heat cycles = 42 days

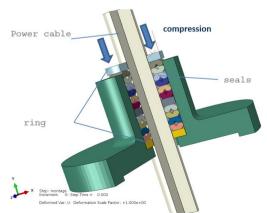


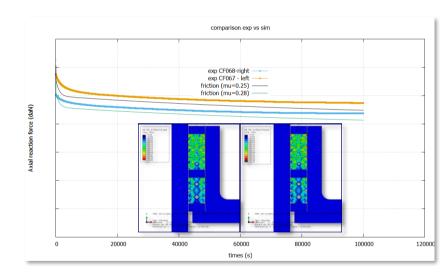


Numerical Simulation: Material parameters

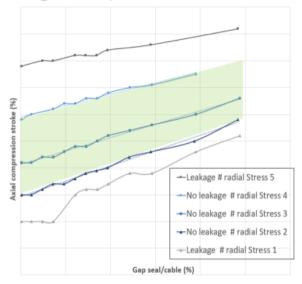

identification

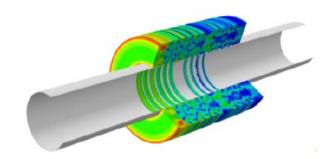
 Mechanical behaviour of seals and modelling



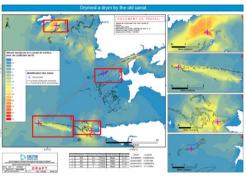

Numerical Simulation: Material parameters identification

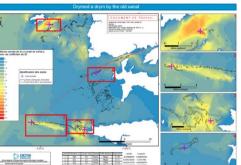
Numerical Simulation: Sensitivity analysis


- Comparison between experiment and numerical results for sealing performance; impact of:
 - Friction coefficient (lubricated or not)
 - compression level
 - Diameter of cable,
 - Design and hardness of seal
 - Temperature (inside and outside)



Numerical Simulation: Design space


- Improvement the knowledge of the sealing system for lifetime prediction
 - Safe design area identified between over stressed and under stressed area
- Development and validation of abacus to determine clamping conditions



geing tests

- Ageing of EPDM seals in sea water
 - Re-use of DRYM I Proof of Concept for natural ageing and immersed in Fromveur Channel (3 years immersion in area 1)
 - Accelerated ageing lab tests
- **WLF Time/ Temperature** equivalence for rubber material
- No expected damage after 25 years of natural ageing

Eprouvettes

Ageing	Samples					
	Temperatures					
	Neuf	90°C	105°C	120°C	135°C	150°C
Durations	0 days	50 days	30 days	24 days	15 days	5 days
		100 days	50 days	70 days	30 days	10 days
		150 days	100 days	100 days	50 days	14 days
		250 days	200 days	125 days	75 days	25 days
		350 days	300 days	175 days	126 days	49 days

T0 + 3 years

DRYM: a DRY Mate connector dedicated to floating wind: Focus on

long term behaviour of sealing system

Conclusions

- Technical and scientific benefits
 - Mechanical behaviour assessment of rubber packing with heat cycles under pressure
 - Mechanical cable gland system compliant with thermal cycles requirements
 - Accelerated and natural ageing tests on rubber seals
 - → Validation of long-term durability of the system on a XLPE power cable
 - Experimental procedures for qualification of sealing system ready
 - Definition of interface requirements with power cables
 - Design Abacus ready for upscale to 66kV applications

A LEADER IN MARINE RENEWABLE ENERGIES