Wind & Marine Energy Systems & Structures CDT

STRUCTURAL OPTIMISATION OF OFFSHORE DIRECT-DRIVE WIND TURBINE GENERATORS INCLUDING STATIC AND DYNAMIC ANALYSES

Kelly Tartt;

A McDonald; A Kazemi Amiri; P Jaen-So.a

• Background

Method

• Results

Conclusion

- Requirement to increase amount of energy extracted from the wind is growing.
- This can be achieved by installing larger wind turbines.
 - Larger wind turbines 🖝 Larger generators.

Photo Courtesy of: http://shutthedoorhaveaseatblog.blogspot.com/2011/04/wind-turbinesdirect-drive-vs-gearbox.html

Photo Courtesy of: https://www.magnax.com/magnax-blog/axialflux-vs-radial-flux-for-direct-drive-generators

- Disadvantages:
 - Large and Heavy.
 - Equation 1:

 $P \uparrow = T \uparrow \omega \downarrow$

• Equation 2: $T \uparrow = 2\pi R^2 \uparrow \sigma l \uparrow$

PROJECT AIM

- Aim of the Project:
 - Analyse the generator in the NREL 15MW reference wind turbine, specifically looking at the structural mass of the rotor structure.
 - Use Ansys to optimise the rotor structure by varying certain parameters in order to reduce the structural mass.
 - Review from both static and dynamic perspectives.
 - Ensure the radial deformation and equivalent stress stay within set limits (Static).
 - Ensure the natural frequencies of the structure avoid the operating region (Dynamic).

TURBINE - SPECIFICATION

)f∛h∥ II/A

• Turbine Specification:

PARAMETER	VALUE
POWER RATING	15 MW
HUB HEIGHT	150 m
ROTOR DIAMETER	240 m
DRIVETRAIN	Low Speed, Direct Drive
MINIMUM ROTOR SPEED	5 rpm
MAXIMUM ROTOR SPEED	7.56 rpm

GENERATOR - SPECIFICATION

• Generator Specification:

PARAMETER	VALUE
RATED SPEED	0.792 rad/s
RATED TORQUE	21.03 MNm
AIR GAP RADIUS	5.08 m
CORE LENGTH	2.17 m
AIR GAP LENGTH	10.16 m
POLES	200
STATOR SLOTS	240
SHAFT TILT ANGLE	6 degrees

GENERATOR - SPECIFICATION

• Rotor Specification:

PARAMETER	VALUE
ROTOR RIM THICKNESS	63.69 m
ROTOR YOKE THICKNESS	63.62 m
MAGNET HEIGHT	58.39 m
ROTOR DISC THICKNESS	81.75 m

STATIC ANALYSIS

• Applied Forces/Loading:

FORCE	VALUE
NORMAL STRESS (A)	447,066 Pa
TORQUE (B) 🦳	21.03 MNm
ROTATIONAL ////////////////////////////////////	0.792 rad/s
GRAVITY (D)	gcos∂ = 9.416 m/s ²
DISTRIBUTED MASS (Rotor Yoke & Magnets)	46,021 kg

STATIC ANALYSIS – Normal Stress

• Uniform Loading (Mode 0):

• Non-Uniform Loading (Mode 1):

DYNAMIC ANALYSIS

- Purpose: Making the operating range clear, by avoidance of resonance.
- Campbell Diagram:

OBJECTIVE	VALUE
MASS (ROTOR + MAIN SHAFT)	Minimize

CONSTRAINT	VALUE
VON MISES EQUIVALENT STRESS (Ultimate Limit State of Strength)	< 200 MPa
DEFORMATION IN RADIAL DIRECTION (Critical Deflection, 20% of Air Gap Length)	-2.032 < x < 2.032 mm
NATURAL FREQUENCIES (Avoidance of Resonance in Operation Speeds Range)	f < 6 Hz and f > 16 Hz

OPTIMISATION SCENARIOS

• 14 scenarios were investigated.

SCENARIO	SCENARIO	PARAMETER	UNIFORM / NON-UNIFORM LOADING	
NUMBER	DESCRIPTION	DESCRIPTION	STATIC ONLY	STATIC AND DYNAMIC
1		Design Variables	Rim and Disc Thicknesses	Rim and Disc Thicknesses
Ţ	1 BASE CASE	Constraints	Stress/Deformation	Stress/Deformation/Natural Frequencies
2	MASS REMOVAL	Design Variables	Rim and Disc Thicknesses and Holes Diameter	Rim and Disc Thicknesses and Holes Diameter
2 ADDITION OF HOLES	Constraints	Stress/Deformation	Stress/Deformation/Natur I	

SCENARIO 1a

• BASE CASE (UNIFORM LOADING):

PARAMETER	VALUE	
ROTOR RIM THICKNESS	63.69 mm	
RIM LENGTH	2.17 m	
ROTOR DISC DIAMETER	10.53 m	
ROTOR DISC THICKNESS	81.75 mm	
SHAFT OUTER DIAMETER	3 m	
SHAFT INNER DIAMETER	2.8 m	

• BASE CASE – RESULTS – STATIC – UNIFORM LOADING:

Max. = 3.8 mm Min. = -5.4 mm

Max. = 48.8 MPa

Equivalent Stress

SCENARIO 1b

• BASE CASE (NON-UNIFORM LOADING):

• BASE CASE – RESULTS – STATIC – NON-UNIFORM LOADING:

Max. = 6.1 mm Min. = -7.4 mm

Max. = 49.3 MPa

Equivalent Stress

• BASE CASE – RESULTS – DYNAMIC:

Non-Uniform Loading f = 9.8 Hz Uniform Loading f = 9.7 Hz

Non-Uniform Loading f = 10.1 Hz

<u>Mode 7</u>

Uniform Loading f = 9.8 Hz

• BASE CASE (UNIFORM vs. NON-UNIFORM LOADING):

	UNIFORM LOADING		NON-UNIFORM LOADING	
PARAMETER	STATIC ONLY	STATIC AND DYNAMIC	STATIC ONLY	STATIC AND DYNAMIC
MASS (kg)	2.58 x 10 ⁵	2.58 x 10 ⁵	-	-
EQUIVALENT STRESS (MPa)	111.11	111.11	-	-
DEFORMATION (Radial) (mm)	-2.03	-2.03	-	-
FREQUENCY (MODE 6) (Hz)	N/A	18.9	N/A	-
FREQUENCY (MODE 7) (Hz)	N/A	19.1	N/A	- 4

• FINAL RESULT (UNIFORM LOADING):

PARAMETER	ORIGINAL VALUE	OPTIMISED VALUE	
ROTOR RIM THICKNESS	63.69 mm	244.7 mmm	
ROTOR DISC THICKNESS	81.75 mm	108.39 mm	

SCENARIO 2a

• ADDITION OF HOLES (UNIFORM LOADING):

PARAMETER	VALUE	
ROTOR RIM THICKNESS	63.69 m	
RIM LENGTH	2.17 m	
ROTOR DISC DIAMETER	10.53 m	
ROTOR DISC THICKNESS	81.75 m	
SHAFT OUTER DIAMETER	3 m	
SHAFT INNER DIAMETER	2.8 m	
HOLE DIAMETERS	1 m	

SCENARIO 2a - COMBINATIONS

• DIFFERENT COMBINATIONS ANALYSED:

HOLES RADIUS	7	8	9
3 m		\checkmark	\checkmark
3.5 m			

• ADDITION OF HOLES – RESULTS – STATIC – UNIFORM LOADING:

Deformation

7 Holes

8 Holes

9 Holes

Distance Between Holes - 6m

• ADDITION OF HOLES – RESULTS – STATIC – UNIFORM LOADING: Deformation

Equivalent Stress

7 Holes

8 Holes

9 Holes

Distance Between Holes - 7m

SCENARIO 2a - RESULTS

• ADDITION OF HOLES – RESULTS – DYNAMIC:

<u> Mode 6</u>

NUMBER OF HOLES	FREQUENCY (Hz)
7 Holes @ 3m	9.34
7 Holes @ 3.5m	9.34
8 Holes @ 3m	9.36
8 Holes @ 3.5m	9.19
9 Holes @ 3m	9.20
9 Holes @ 3.5m	9.30

<u>Mode 7</u>

NUMBER OF HOLES	FREQUENCY (Hz)
7 Holes @ 3m	9.49
7 Holes @ 3.5m	9.36
8 Holes @ 3m	9.48
8 Holes @ 3.5m	9.31
9 Holes @ 3m	9.48
9 Holes @ 3.5m	9.32

SCENARIO 2a - RESULTS

• ADDITION OF HOLES – RESULTS – DYNAMIC:

Mode 8

NUMBER OF HOLES	FREQUENCY (Hz)
7 Holes @ 3m	15.62
7 Holes @ 3.5m	15.60
8 Holes @ 3m	15.69
8 Holes @ 3.5m	15.38
9 Holes @ 3m	15.62
9 Holes @ 3.5m	15.40

Min

Max

Mode 9

	NUMBER OF HOLES	FREQUENCY (Hz)
	7 Holes @ 3m	15.77
	7 Holes @ 3.5m	15.95
	8 Holes @ 3m	15.78
	8 Holes @ 3.5m	15.57
9	9 Holes @ 3m	15.73
	9 Holes @ 3.5m	15.59

SCENARIO 2a - RESULTS

• ADDITION OF HOLES – RESULTS – UNIFORM LOADING:

	7 HOLES @ 3m		8 HOLES @ 3m		9 HOLES @ 3m	
PARAMETER	STATIC ONLY	STATIC AND DYNAMIC	STATIC ONLY	STATIC AND DYNAMIC	STATIC ONLY	STATIC AND DYNAMIC
MASS (kg)	1.30 x 10 ⁵	2.01 x 10 ⁵	1.59 x 10⁵	1.99 x 10 ⁵	51336	1.85 x 10⁵
EQUIVALENT STRESS (MPa)	199.2	98.39	59.27	58.55	-21.91	36.63
DEFORMATION (Radial) (mm)	-1.12	-1.95	-2.03	-1.92	-1.95	-0.68
FREQUENCY (M6) (Hz)	N/A	16	N/A	16	N/A	16.03
FREQUENCY (M7) (Hz)	N/A	17.25	N/A	16.12	N/A	21.63
FREQUENCY (M8) (Hz)	N/A	18.53	N/A	24.41	N/A	23.75
FREQUENCY (M9) (Hz)	N/A	25.35	N/A	24.77	N/A	25.98

SCENARIO 2a - RESULTS

• ADDITION OF HOLES – RESULTS – UNIFORM LOADING:

	7 HOLES @ 3.5m		8 HOLES @ 3.5m		9 HOLES @ 3.5m	
PARAMETER	STATIC ONLY	STATIC AND DYNAMIC	STATIC ONLY	STATIC AND DYNAMIC	STATIC ONLY	STATIC AND DYNAMIC
MASS (kg)	1.25 x 10⁵	2.11 x 10 ⁵	1.3 x 10 ⁵	2.01 x 10 ⁵	1.81 x 10 ⁵	2.04 x 10⁵
EQUIVALENT STRESS (MPa)	109.28	36.76	103.68	55.39	58.14	36.12
DEFORMATION (Radial) (mm)	-0.37	-1.91	-2.01	-1.84	-2.03	-1.67
FREQUENCY (M6) (Hz)	N/A	16.04	N/A	16.02	N/A	16.00
FREQUENCY (M7) (Hz)	N/A	18.89	N/A	18.18	N/A	16.00
FREQUENCY (M8) (Hz)	N/A	24.15	N/A	24.16	N/A	23.6
FREQUENCY (M9) (Hz)	N/A	27.25	N/A	25.79	N/A	24.55

• ADDITION OF HOLES – OPTIMISED DESIGN:

• 9 Holes @ 3m Radius

PARAMETER	OPTIMISED BASE CASE	OPTIMISED CASE	DIFFERENCE
RIM THICKNESS (mm)	244.7	83.7	-65.8% 🗸
DISC THICKNESS (mm)	108.39	178.67	64.8% 个
MASS (kg)	2.58 x 10 ⁵	1.85 x 10⁵	-28.3% 🗸
EQUIVALENT STRESS (MPa)	111.11	36.63	-67.0% 🗸
DEFORMATION (Radial) (mm)	-2.03	- 0.678	-66.6%

SCENARIO 2b

• ADDITION OF HOLES (NON-UNIFORM LOADING):

• ADDITION OF HOLES – RESULTS – STATIC – NON-UNIFORM LOADING:

Deformation

7 Holes

Equivalent Stress

8 Holes

Distance Between Holes - 6m

• ADDITION OF HOLES – RESULTS – STATIC – NON-UNIFORM LOADING:

Deformation

Min

8 Holes

Distance Between Holes - 7m

SCENARIO 2b - RESULTS

• ADDITION OF HOLES – RESULTS – DYNAMIC:

<u>Mode 7</u>

Mode 8

<u>Mode 9</u>

• ADDITION OF HOLES – RESULTS – NON-UNIFORM LOADING:

	7 HOLES @ 3m		8 HOLES @ 3m		9 HOLES @ 3m	
PARAMETER	STATIC ONLY	STATIC AND DYNAMIC	STATIC ONLY	STATIC AND DYNAMIC	STATIC ONLY	STATIC AND DYNAMIC
MASS (kg)	-	-	1.53 x 10⁵	1.8 x 10 ⁵	-	-
EQUIVALENT STRESS (MPa)	-	-	93.98	94.53	-	-
DEFORMATION (Radial) (mm)	-	-	-2.03	-1.97	-	-
FREQUENCY (M6) (Hz)	N/A	-	N/A	16.04	N/A	-
FREQUENCY (M7) (Hz)	N/A	-	N/A	16.01	N/A	<u> </u>

• ADDITION OF HOLES – RESULTS – NON-UNIFORM LOADING:

	7 HOLES @ 3.5m		8 HOLES @ 3.5m		9 HOLES @ 3.5m	
PARAMETER	STATIC ONLY	STATIC AND DYNAMIC	STATIC ONLY	STATIC AND DYNAMIC	STATIC ONLY	STATIC AND DYNAMIC
MASS (kg)	-	-	-	-	-	-
EQUIVALENT STRESS (MPa)	-	-	-	-	-	-
DEFORMATION (Radial) (mm)	-	-	-	-	-	-
FREQUENCY (M6) (Hz)	N/A	-	N/A	-	N/A	-
FREQUENCY (M7) (Hz)	N/A	-	N/A	-	N/A	- ()))

• ADDITION OF HOLES – OPTIMISED DESIGN:

• 8 Holes @ 3 m Radius

PARAMETER	OPTIMISED BASE CASE	OPTIMISED CASE	DIFFERENCE
RIM THICKNESS (mm)	-	71.5	-
DISC THICKNESS (mm)	-	168.24	-
MASS (kg)	-	1.8 x 10 ⁵	-
EQUIVALENT STRESS (MPa)	-	94.53	-
DEFORMATION (Radial) (mm)	-	-1.97)))

SCENARIO 3

• ADDITION OF HOLES AND RIM STIFFENERS (UNIFORM LOADING):

PARAMETER	VALUE	
ROTOR RIM THICKNESS	63.69 m	
RIM LENGTH	2.17 m	
ROTOR DISC DIAMETER	10.53 m	
ROTOR DISC THICKNESS	81.75 m	
SHAFT OUTER DIAMETER	3 m	
SHAFT INNER DIAMETER	2.8 m	
HOLE DIAMETERS	1 m	
STIFFENER WIDTH	0.2 m	
OUTER RIM THICKNESS	0.1 m	

CONCLUSION

- To conclude:
 - Baseline NREL design doesn't address the resonance with operating range.
 - Consideration of dynamic constraints, increases the mass of the structure.
 - No further mass reduction when just disc and rim thicknesses are the variables.
 - Introduction of holes, reduces mass, even in combined static-dynamic case.
 - Biggest reduction of mass came from the addition of 9 holes in the disc at a distance of 3m from the centre for uniform loading and 8 holes at a 3m radius for non-uniform loading.
 - Results suggest that the new design with 8 holes at 3m radial distance is a design option that addresses static and dynamic aspects under both uniform and non-uniform loading cases.

FUTURE WORK

- Proposed Future Work:
 - Reduction of radial deformation by the addition of stiffeners (Mode 1 cases).
 - Investigation of different rotor shapes.
 - Optimisation of stator's support structure.
 - Optimisation of direct-drive generator as a whole.

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263