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1 High wind
potential.

9 times the
energy
consumed in
2050 [2].
CF up to 80%
[1].

2 High installation
and maintenance
cost [3].

Figure: Stationary wind turbine capacity
factor [1].

shortname DynPosWT



Introduction
Methods
Results

Conclusion

Motivation
Concept description
Aims and objectives

Motivation

1 High wind
potential.

9 times the
energy
consumed in
2050 [2].
CF up to 80%
[1].

2 High installation
and maintenance
cost [3].

Figure: Stationary wind turbine capacity
factor [1].

shortname DynPosWT



Introduction
Methods
Results

Conclusion

Motivation
Concept description
Aims and objectives

Motivation

1 High wind
potential.

9 times the
energy
consumed in
2050 [2].

CF up to 80%
[1].

2 High installation
and maintenance
cost [3].

Figure: Stationary wind turbine capacity
factor [1].

shortname DynPosWT



Introduction
Methods
Results

Conclusion

Motivation
Concept description
Aims and objectives

Motivation

1 High wind
potential.

9 times the
energy
consumed in
2050 [2].
CF up to 80%
[1].

2 High installation
and maintenance
cost [3].

Figure: Stationary wind turbine capacity
factor [1].

shortname DynPosWT



Introduction
Methods
Results

Conclusion

Motivation
Concept description
Aims and objectives

Motivation

1 High wind
potential.

9 times the
energy
consumed in
2050 [2].
CF up to 80%
[1].

2 High installation
and maintenance
cost [3].

Figure: Stationary wind turbine capacity
factor [1].

shortname DynPosWT



Introduction
Methods
Results

Conclusion

Motivation
Concept description
Aims and objectives

Concept description

Vidal’s Patent

Patented in 1983.

Wind energy is used to
sail upwind.

Figure: Jean-Pierre Vidal’s
concept [5].
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Dynamically Positioned Wind
Turbine

Barge platform equipped
with a wind turbine and
propellers.

Dynamical positioning by
the propellers.

On-board storage (e.g.
Electrolyzers and
Hydrogen tanks,
Batteries, etc.).

Figure: Artist view of a
dynamically positioned wind
turbine.
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Aims and objectives

Aim

Feasibility of the dynamically positioned floating wind turbine.

Objectives

Velocity and Power Prediction Program (VPPP).

Design parameters effects.

Environmental conditions effects.
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Equation of motion

Assumptions

1 Small static angle [4].

2 Negligible linear wave
structure dynamic effects
[4].

3 Wind turbine rotor is
perpendicular to the
wind direction.

Equation of Motion

TT + Fd + TP = 0
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1 Small static angle [4].
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3 Wind turbine rotor is
perpendicular to the
wind direction.

Equation of Motion
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Figure: Force diagram.
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Wind turbine mathematical model

Momentum Theory

Thrust force:

TT =

{
1
2ρaATCTV

2 if Vcut-in ≤ V < Vcut-out

0 otherwise

Generated power:

PT = ηT × 2ρAT fca(1− a)2V 3
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Wind turbine mathematical model

Figure: Thrust force and electric power of a 78 m rotor wind turbine.
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Mean wave drift mathematical model

Potential Theory

Irregular waves:

Fd =

∫ ∞
0

Φ(h)S(f )df

Equivalent regular wave:

Fd ,eq = Φ(h)A2
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Mean wave drift mathematical model

Figure: Mean wave drift force.
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Propellers mathematical model

Wageningen B-series screw propellers

Thrust force:

TP = ρwn
2D4

P (KT ,P1 + KT ,P2)

Consumend power:

PP = 2πnQP1 + 2πnQP2
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Propellers mathematical model

Figure: Propellers thrust force and consumed power for an inflow velocity
of 0 m/s.
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Power curve

Observation

Maximum Power of 0.89
MW at 13.4 m/s.

Regions 1, 2 and 3, Fd
↗.

Region 1, TT ↗.

Regions 2 and 3, TT ↘.
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Capacity factor

Figure: Mean CF of a dynamically positioned wind turbine deployed in
the North Atlantic ocean - From 2015 to 2017.
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Capacity factor

Figure: Mean CF of a stationary wind turbine deployed in the North
Atlantic ocean - From 2015 to 2017.
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For the proposed design:

Max Pnet = 0.89 MW at a wind velocity of 13.4 m/s.

If deployed in the North Atlantic ocean max CF = 15%.

Greater CF

Consider other propellers type.

Consider other platform types.

Consider other design parameters.
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