

Marcel Schütt<sup>1</sup>, Fabian Anstock<sup>1</sup> and Vera Schorbach<sup>1</sup>

<sup>1</sup>Hamburg University of Applied Sciences (HAW Hamburg)

EERA DeepWind Conference 2021

Marcel Schütt, Fabian Anstock and Vera Schorbach

# The challenge of comparing the blade structure of 2- and 3-bladed turbines

*The simplified aerodynamic redesign philosophies:* 





The relative blade structure does not change during the redesign!

The impact of the chosen philosophy on the structural characteristics:

- Increased chord: More beneficial for the blade structure due to improvements in blade stiffness (higher second moment of area)
  - $\blacktriangleright$  Overproport. thinner material thickn.  $\rightarrow$  Higher rotor mass savings  $\rightarrow$  Lower buckling resistance
- Increased tip speed: Less beneficial for the blade structure (but offers other cost benefits, e.g. in the drive train)
  - > Not such reduced material thickn.  $\rightarrow$  Higher buckling resistance  $\rightarrow$  Lower rotor mass savings

#### Conflict of interest between prevent buckling and saving rotor mass!



Approach to overcome the challenge: One tip speed should results in the same buckling stability as the 3B reference  $\rightarrow$  <u>"BREAK-EVEN-POINT"</u>





Marcel Schütt, Fabian Anstock and Vera Schorbach

## The procedure to detect the "break-even-point"

## 1. Choose tip speed

Initial tip speed of the two-bladed turbine's blade (e.g. 100 m/s)

# 2. Aerodynamic redesign

Convert a 3B reference blade into a 2B one by using the approach of fair comparablility<sup>1</sup>



## 3. Structural redesign

Adapt the material thicknesses of the blade parts according to the method of progressive structural scaling<sup>2</sup>

4. Evaluation of the structural characteristics

Analyze the stress distributions, the buckling load factor, and the blade weight by use of FEAs





## 5. Repeat procedure

Use the procedure as iterative process

#### Compared on the next slides:

- 2B 20 MW blades with tip speeds
  - 90 m/s,
  - 95 m/s,
  - 100 m/s,
  - 105 m/s, and

HAW

- 110 m/s
- ➡ 3B reference: INNWIND 20 MW

HAM BURG

Anstock F., Schütt M., and Schorbach V. A new approach for comparability of two- and three-bladed 20 MW offshore wind turbines. Journal of Physics: Conference Series, 2019.
Schütt M., Anstock F., and Schorbach V. Progressive structural scaling of a 20 MW two-bladed offshore wind turbine rotor blade examined by finite element analyses. Journal of Physics: Conference Series, 2020

Marcel Schütt, Fabian Anstock and Vera Schorbach



HAW HAMBURG CC4E

Marcel Schütt, Fabian Anstock and Vera Schorbach

### The "break-even-point"

Comparison of all buckling load factors and masses in one diagram:



#### **Conclusion**

- ✓ The "break-even-point" blade provides appr. the same stress distribution <u>and</u> appr. the same buckling resistance
- ✓ The redesigned "break-even-point" 2B turbine's blade enables a fair comparison with the 3B reference, concerning
  - $\checkmark$  the blades' aerodynamics,
  - $\checkmark\,$  the blades' loads, and finally
  - ✓ the blades' structures.
- ✓ The procedure can be easily repeated for any other turbine and blade size, for which a fair comparison of 2B and 3B turbine blades should be investigated.
- The "break-even-point" procedure detected the most beneficial combination of preventing buckling and saving rotor mass.
- ✓ This compromise outperforms both extremes of increased chord or tip speed in contrast to most descriptions in literature.

HAW

HAMBURG

