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FAST.Farm and DIWA
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❖ 3 turbine models: NREL5MW, DTU10MW, WM12MW

❖ 3 wind speeds: 8 m/s; 11.4 m/s; 15 m/s

❖ 6 seeds, 1-hour duration

❖ Turbulence intensity: 5.6%

❖ Turbulence scaling: none

❖ Wind profile: constant
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This study aimed to:

• compare the vertical and horizontal meandering, due to the characteristic

low rigid mode eigenfrequencies of FWTs.
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Conclusions and further work
This study aimed to:

• compare the vertical and horizontal meandering, due to the characteristic

low rigid mode eigenfrequencies of FWTs.

The conclusions are:

• the steady-state deficit model used impacts the wake recovery to a non-

negligible extent;

• the horizontal and vertical meandering yield substantial differences at low

frequencies;

Next step includes a comparison with CFD simulations.
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