Design and CFD Studies of UPWARDS 15 MW Virtual Wind Turbines

Balram Panjwani¹, Victoria Margaux Bloodworth², Søren Daugaard Henrichsen² ¹SINTEF, Trondheim, Norway Siemens Gamesa Renewable Energy, Aalborg, Denmark

EERA DeepWind'2021, Trondheim, Norway

Outline

- In the past 30 years, wind turbines have become from kW to MW in size, and the largest turbines sizes are
 - Vestas V164 with a rated capacity of 8 MW and later upgraded to 9.5 MW,
 - Siemens Gamesa 10 MW wind turbine SG 10.0-193 DD upgraded to SG 11.0-193 DD Flex,
 - GE Haliade-X 13 MW wind turbine.
- The primary objective of the current study is to
 - Provide detailed design parameters of UPWARDS 15 MW virtual WT
 - Present and discuss CFD simulation (RANS) of virtual wind turbine
 - Provide power performance data of the virtual wind turbine

Methodology

- The design of the wind turbine is based on the previous SGWP 10MW wind turbine.
- Siemens internal design software have been used for designing the 15MW wind turbine rotor and following design parameters related to the rotor have been considered.
 - **Power control:** stall, variable pitch, controllable aerodynamic surfaces and yaw control
 - **Rotor position:** upwind or downwind
 - Yaw control: yaw driven, free yaw or fixed yaw
 - **Rotor speed:** constant or variable
 - Tip speed ratio and solidity
 - Type of hub: rigid, teetering, hinged blades or gimballed
 - Number of blades
- WT have been optimized considering aerodynamic, aeroelastic and structural properties.

Design specification

Design Criterion	Design
	Specification
Type of turbine	3- bladed front
	runner
Direction of rotation	Clockwise (looking
	downwind)
No. of blades	3
Power Control	Pitch regulated with
	variable speed
Rated Power	15MW
AEP – Target	80.17 GWh
Capacity Factor	60.70 %
Rotor Diameter	230 m
Hub diameter	6 m
Min. RP.2M	3 RPM
Rated RPM	8.8
Cut-in-Wind Speed	3 m/s
Cut-out wind speed	25 m/s
Rated wind speed	10.77 m/s
Tower Height	130 m
BCD	4.3

Design Criterion	Design
	Specification
Shaft Hub Flange horizontal	-4.829
relative to tower top	
[SHFtoTThor][m]	
Shaft Hub Flange vertical	-5.212
relative to tower top	
[SHFtoTTver][m]	
Shaft Hub Flange to Rotor	-3.250
Center [SHFtoRC][m]	
Rotor Center to	-0.158
BladeFlange_horizontal	
[RCtoBFhor][m]	
Rotor Center to	3.636
BladeFlange_vertical	
[RCtoBFver][m]	
Blade length [Bll][m]	112.0
Blade pre-bending [BlpreB][m]	2.860
Tower Diameter at Blade tip	7.50
[TowD][m]	
Horizontal distance from tower	-8.68
top center to blade root	
[TTtoBroot][m]	
Horizontal distance from tower	-25.31
top center to undef blade tip	
[UndefHorDist][m]	
Vertical distance from	109.95
towertop to blade tip	

Properties of 15 virtual WT

- Blade Structural
- Blade Aerodynamic
- Hub and Nacelle
- Drive train and tower
- Baseline Control System

Blade Aerodynamic	properties
--------------------------	------------

Design Criterion	Design
	Specification
Aero baseline	NACA64-618; DU
	08-W-210; DU91-
	W2-250; DU97-W-
	300; DU-A 400-050;
	Cylinder
Blade length	112.0 m
Chord length	5.82 m
Blade twist. From Max. to min. Value	20
Blade surface area	906m ²
Airfoils – family	Mixture of NACA
	and DU profiles
Maximum chord length position	22
Tip chord	0.52
Maximum Blade pre bending (x-axis	2.86m
offset)	
Max. Self-pitch/Blade Sweep (y-axis	0
offset) – Based on a straight beam	

Aerodynamic coefficients of the DU 08-W-210, at Re = 8 million

CFD simulation of 15 MW wind turbine

- CFD simulations of WT using OpenFoam were performed
- Wind turbine model using Actuator surface model developed during the UPWARDS project was utilized¹
- Simulation were performed for a single turbine

Computational domain

¹Balram Panjwani, "Effect of wind direction on wind park performance using Actuator Surface Modelling (ASM) approach", EERA DeepWind2020 conference, Trondheim January 15th-17th, 2020

Results: CFD simulation of 15 MW wind

turbine

- The power coefficient for this turbine is around 0.465
- The power obtained from theory and CFD are quite similar.

Power curve of UPWARDS 15 MW Wind turbine

Acknowledgement

• The work performed here is a part of H2020 UPWARDS project. The UPWARDS project has received funding from the European Unions' Horizon 2020 research and innovation program GA NO. 763990.

