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When a wind power plant is operating with a reserve, whether Tk ;
. . . . . . . I
curtaﬂpd or overplan.ted, thelfe 1s a margin .ofj ﬂex1b1hty in the | Plant control
operation of each wind turbine. This flexibility can be used T T T
beneficially, for instance to reject fluctuating loads. Pocc, Qpcc Power commands Vo, 0, Anemometer sp. and dir.
0 =0
. : : : lpcc, Vpcc Meas. d-q current, Z* Observed outputs
Th(? ob]ect.lve 1s to develop a plant control a.lgorlthm that . voltage at PCC
* 1s straightforward to understand and implement, using only o o II* Observed spectral outputs

lg, Vg Meas. d-q current,

basic sensor measurements; voltage at turbines P\’ @ Turbine power commands

» respects the hierarchy in which the turbine-level controller _
) Meas. rotor speed

takes precedence, interacting only via power set-point B (Not used by the present algorithm):
-t Meas. blade pitch
commands to each turbine; b p E Energy price metric
» tracks an operator power command at the plant level; and, X Meas. nacelle yaw — o ,
i i } V' Meas. wind field (lidar)
* rejects low-frequency loading due to turbulent winds. 79 M e veloci
n eas. nacelle velocity ¥ Nacelle yaw command
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Observer architecture

The observer is constructed around a state-space
model of the wind turbine. It outputs quantities [ng]
of interest z*, among which are the observed wind

speed and direction. These are fed to a registry

containing the last several minutes of timesteps.
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. o Clustering and spectral fatigue
_____ o7 . A clustering algorithm using Bayesian probability
° ° establishes the local "weather" — the large-scale flow patterns
* * —in the vicinity of each turbine. Subtracting these from the
¢ ° locally observed values gives the "turbulence".
o [
° % ° . The cluster-average wind speed is used to set the target
o o thrust, such that the controller rejects the turbulent
o . fluctuations. The time series of turbulence is used together
o - with an analytical method to estimate the loads on the

"Turbulence"

. . rotating blades and the fatigue rates of turbine components.
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All inputs are low-pass filtered with a

time constant of w,, and notch filtered
/ at the first tower resonant frequency.
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Control architecture

based on available power

The thrust-hold and power-tracking branches may "duel",
but the integral action of the power tracking will always win.
Higher-damage-rate turbines are responsible for less power
tracking, allowing for more effective thrust-hold.

Target thrust
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Hy Cluster wind speed Ly

(weather)

A ppcc Turbine's share of the
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total WPP power
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High-gain LP filter Ky
Gain scheduling b . Ij
a Penalty functions —
based on fatigue
damage rate D* o

O Values from all other
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These turbines, experiencing low levels of

turbulent loading, are taking additional

responsibility for power tracking
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Case study and performance

The control algorithm was tested and tuned in a
simplified turbulent flow field, representative of

normal operation. The TotalControl Reference Wind

Power Plant (32 turbines) under 20% curtailment was

used as a case.

The results demonstrate that there 1s a synergy effect
in coordinating the operation of the turbines.
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Note that the standard deviation of thrust is limited to the
low-frequency component, and, as seen in the plot, it does
not directly correspond to the component damage metric.
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These turbines, experiencing high levels of
turbulent loading, are rejecting part of the
low-frequency thrust fluctuations




Outlook

Tuning of the observer was performed using linear theory. It
remains to schedule the pointwise linear models to obtain a full
nonlinear controller. There are two candidate approaches:

1. Linear parameter varying systems using either a global model
reduction technique (one reduced basis across all models) or a
multiple-model interpolation (fuzzy set) approach.

2. Nonlinear system identification / surrogate modelling using
machine-learning techniques.

The methods will be compared for performance, robustness, and

ease-of-use.

The "synergy effect" needs to be demonstrated in dynamic
LES/CFD simulations that properly account for the atmospheric
flow through a large wind power plant.

A full report and references to the wider literature can be found in Merz KO et al. (2020). Hierarchical
Wind Power Plant Supervisory Controller. Deliverable D4-2, TotalControl. Available for download at
https://www.totalcontrolproject.eu/dissemination-activities/public-deliverables
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