

Development of a Bayesian Network Updating Model for O&M planning of Offshore Wind Structures

Tobi Elusakin Dr Mahmoud Shafiee Tosin Adedipe

Research Background

- Operation and maintenance (O&M) is one of the critical <u>cost-driving</u> activities throughout the life cycle of wind farms.
- Accounting for about 15-30% of the levelized cost of energy (LCOE).
- O&M planning and decision-making should be optimised to take into account new information obtained via inspections or condition monitoring.

Research Background

- The design of OWT monopiles is driven by fatigue limit state.
- This emphasises the importance of investigations into <u>fatigue-based</u> <u>deterioration</u>.
- The <u>Bayesian networks</u> (BN) technique is used for this study.

Fig 2. Simple BN

- Very flexible in that it allows for the use of both objective and subjective inputs in the model.
- Can allow <u>updating</u> based on new information.

OWT Case Study

- The monopile considered in this study is taken from a generic offshore wind turbine used in phase I of the OC3 project.
- The monopile supports an NREL 5MW reference turbine and is located in 20m water depth.

Table 1. Variables in stochasticcrack growth model

Variable	Mean	Standard Deviation	Distribution
Initial crack size, a_0 (mm)	0.5	0.05	Exponential
Crack growth model constant, <i>m</i>	3.0	0.15	Normal
Crack growth model constant, <i>C</i>	3.322×10^{-13}	1.660×10^{-13}	Normal
Stress range, S_{re} (MPa or Nmm^{-2})	60	10	Normal
Number of cycles, <i>N</i> (cycles/hr)	1.14×10^{2}	-	Deterministic
Geometric parameter (G)	1	_	Deterministic

Model Development – Costs of Implementing CBM

- The fatigue crack growth over time can be seen in figure 5.
- The time being observed for this study is 24 hours.
- However, it can be inferred from the model how crack length can be measured given observations in real-time with remote condition monitoring systems.

Fig 5. Probability of fatigue crack length in the range (0.38mm-0.43mm) as a function of time

Questions

