DNV·GL

Verification of coupling interface between an aeroelastic code and a time domain Rankine solver for completing structural analysis of floating wind turbine foundation design

Dr Ali Bakhshandeh rostami

Poster No.: 24

DNV GL floating OWT workflows

Verification study-model definition

Verification study-test cases definition and purpose

	Test name	Mooring line definition/Test notes	Wave conditions	Prescribed files					
Test No.				motion	Mooring loads	Tower loads	SEA file	interface	Purpose of test
1a	Free decay test heave	No mooring lines	Calm water	-	-	-	No	-	Verify modelling and Hydrodynamic inputs
1b	Free decay test pitch	No mooring lines	Calm water	-	-	-	No	-	
2	Fixed cylinder	Rigid Structure	Regular wave, H=2 m, T=8s	-	-	-	Yes	Yes	Verify Excitation force and Bladed/Wasim prescribed wave file (SEA file)
За	Forced Heave decay	Single vertical mooring line with $k_z \sim 1e5$)	Calm water	-	Yes	-	No	Yes	Verify Bladed/Wasim
3b	Forced Pitch Decay	Fore-aft horizontal mooring lines with k _x ~1e5)	Calm water	-	Yes	-	No	Yes	loads)
4a	Structure in regular waves	Fore-aft horizontal moorings with $k_x \sim 1e5$)	Regular wave H=2 m, T=8s, heading=45 deg	Yes	-	-	Yes	Yes	verify prescribed of wave and motions files into Wasim and
4b	Structure in irregular waves	Fore-aft horizontal moorings with $k_x \sim 1e5$)	Sea file [Irregular with Hs = 2 m, Tp=8s, JONSWAP $\gamma = 1$	Yes	-	-	Yes	Yes	validate calculated loads on the structure i.e. hydrostatic and hydrodynamic loads
5a	Thrust load at tower ramping up from t=0s	Fore-aft horizontal moorings with $k_x \sim 1e5$) Constant thrust load applied at tower top	Calm water	-	-	Yes	No	Yes	Validate Bladed and Wasim results when a large load is applied on the tower top. Large load includes wind thrust and RNA mass.
5b	Gravity load at tower top in calm water	Fore-aft horizontal moorings with $k_x \sim 1e5$), a mass of 3160000 kg is added to nacelle	Calm water	-	-	Yes	No	Yes	

Verification study-Result

— Bladed –

Wasim Horizontal axis — Time[s]

5

Conclusions

- Bladed is a servo-hydro-aero-elastic tool that allows fully coupled analysis of a floating wind turbine
- Sesam's Wasim is a potential flow solver that enables detailed calculation of hydrodynamic loading on floating sub-structures
- A coupling interface has been developed that allows exchange of information between Bladed and Wasim, streamlining floater analysis
- Results show good agreement between the two tools, giving trust in the validity and correctness
 of the interface

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

