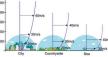
Vertical profiles of wind velocity and turbulence intensity during Low Level Jets at the selected European offshore sites

Piotr Domagalski¹, Mathias Møller², Lars Roar Sætran³


¹WindTAK sp. z o.o., Lodz, Poland, ²BearingPoint Norway AS, Oslo, Norway

³Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

E-mail: piotr.domagalski@windtak.pl

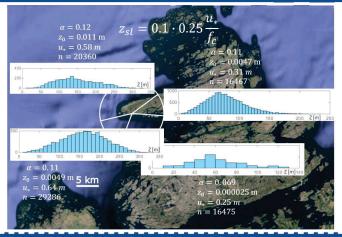
Introduction

- Main research effort regarding the atmospheric boundary layer is focused on the surface layer;
 - Thickness of the boundary layer: Onshore: 200-800 m Offshore: down to 20 m;

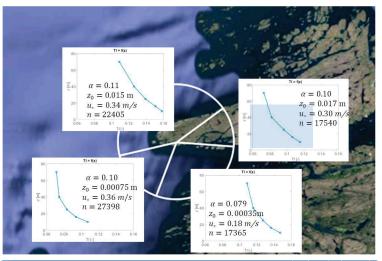
- Oversimplified image: expected vertical profiles of velocity and turbulence intensity are disturbed by Internal Boundary Layer formation or Low Level Jets (LLJ);
- Low Level Jets are typical for areas dominated by strong spatial temperature contrasts (as the land-sea interface);
- Common characteristics of the Low Level Jets include wind-maxima that can exceed geostrophic, expected over the surface layer, wind speed values by 100% or more.

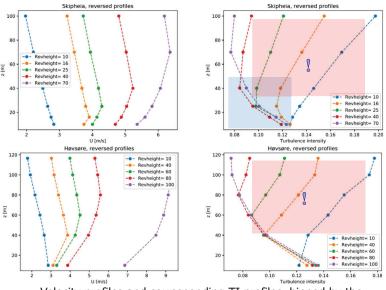
Problem

LLJ's in offshore and coastal locations are observable in direct proximity to the surface, down to tens of meters, influencing the wind turbines production and loads;


Detailed description of the wind characteristics during LLJ is missing.

Objective


The objective of this study was identify the impact of LLJ presence on turbulence intensity (TI) characteristics.


Surface layer thickness at the offshore site - Frøya, NO

Typical vertical TI profiles at offshore site (Frøya, NO)

Velocity and TI vertical profiles during LLJ event Frøya and Høvsøre*

Velocity profiles and corresponding TI profiles, binned by the height of the velocity maximum due to LLJ

*Other sites are showing similar pattern, however disturbed by Internal Boundary Layer formation.

Conclusions&open questions

- LLJ in offshore conditions cause significant velocity increase at hub height;
- Similar (up to 100%) increase of turbulence intensity can be observed;
- Reversed vertical profiles of velocity and turbulence intensity \rightarrow unexpected turbine loading distribution;
- Work in progress, focusing on LLJ identification schemes, LLJ incidence and duration → implication on aviation safety, wildfires risk, modeling atmospheric dispersion and climatology.

References

Møller, M., Domagalski, P., and Sætran, L. R.: Comparing Abnormalities in Onshore and Offshore Vertical Wind Profiles, Wind Energ. Sci. in review.

