



# Introduction to the 1.2 GW Floating Offshore Wind Farm Project in the East Sea, Ulsan, Korea

Hyunkyoung SHIN Trondheim, Norway January 15, 2020

Convenor IEC TC88 MT3-2 (for Revision of IEC 61400-3-2)

**Professor** 

Department of Floating Offshore Wind Energy Generation Systems, Graduate School School of Naval Architecture and Ocean Engineering, College of Engineering University of Ulsan, KOREA







### **Outline**

- 0. Introduction to the University of Ulsan, Ulsan, Korea
- 1. Why Offshore Wind? Why FOWTs?
- 2. Critical Needs for FOWTs in Korea
- 3. Floating Offshore Wind Farm Projects Planned in the East Sea, Korea
  - 3.1 Korea's RE 3020
  - 3.2 Ulsan Shin-Gori 750kW FOWT Pilot Project
  - 3.3 Plan of Floating Offshore Wind Farms in Ulsan
  - 3.4 Green Energy Programs of Ulsan Metropolitan City (2018 ~)
  - 3.5 Comparison with Measured Data and Reanalysis Data







### 0. Introduction to the University of Ulsan, Ulsan, Korea

Ulsan, KOREA



Wikipedia



Source: Explore Korea through Statistics 2018



Kim Yuna, Figure skating Queen Gold medalist, at the Vancouver 2010 Winter **Olympics** Silver medalist, at the Sochi 2014 Winter **Olympics** 





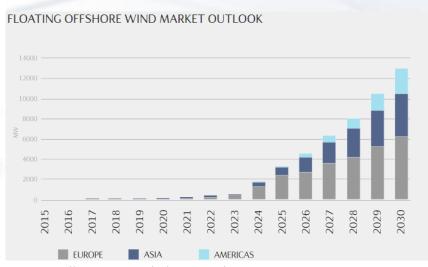
### 0. Introduction to the University of Ulsan, Ulsan, Korea











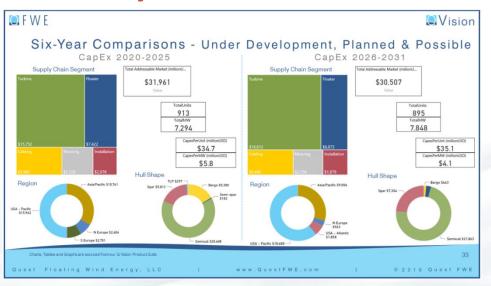

### 1. Why Offshore Wind? Why FOWTs?

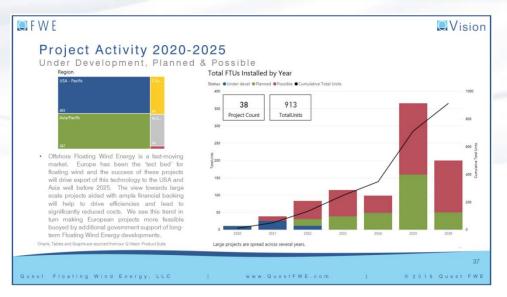
| Industry                                | Compound annual growth rate for<br>GVA between 2010 and 2030 | Total change in GVA between 2010 and 2030 | Total change in employment<br>between 2010 and 2030 |
|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| Industrial marine aquaculture           | 5.69%                                                        | 303%                                      | 152%                                                |
| Industrial capture fisheries            | 4.10%                                                        | 223%                                      | 94%                                                 |
| Industrial fish processing              | 6.26%                                                        | 337%                                      | 206%                                                |
| Maritime and coastal tourism            | 3.51%                                                        | 199%                                      | 122%                                                |
| Offshore oil and gas                    | 1.17%                                                        | 126%                                      | 126%                                                |
| Offshore wind                           | 24.52%                                                       | 8 037%                                    | 1 257%                                              |
| Port activities                         | 4.58%                                                        | 245%                                      | 245%                                                |
| Shipbuilding and repair                 | 2.93%                                                        | 178%                                      | 124%                                                |
| Maritime equipment                      | 2.93%                                                        | 178%                                      | 124%                                                |
| Shipping                                | 1.80%                                                        | 143%                                      | 130%                                                |
| Average of total ocean-based industries | 3.45%                                                        | 197%                                      | 130%                                                |
| Global economy between<br>2010 and 2030 | 3.64%                                                        | 204%                                      | 120%1                                               |

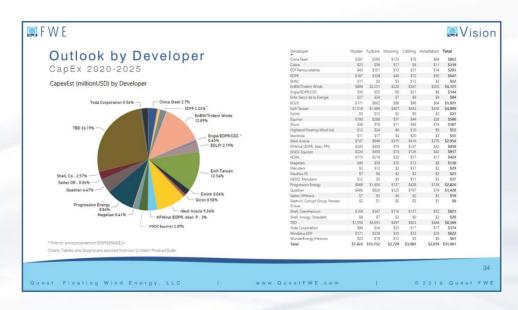
<sup>1.</sup> Based on projections of the global workforce, extrapolated with the UN medium fertility rate.

Source: Authors' calculations based on OECD STAN, UNIDO INDSTAT, UNSD; Lloyd's Register Group (2014; 2013); World Bank (2013); IEA (2014); FAO (2015).




https://www.statoil.com/en/what-we-do/hywind-where-the-wind-takes-us.html




### 1. Why Offshore Wind? Why FOWTs?











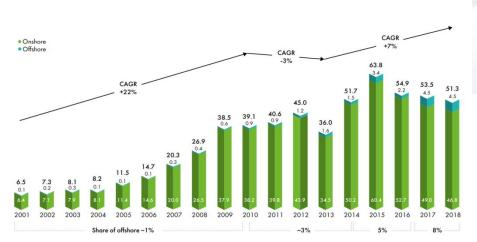


Global Floating Wind Energy Market & Forecast 2019~2031 (Source : Quest Floating Wind Energy 2019)



### Historic development of total installations, 1. Why Offshore Wind? Why FOWTs? UNIVERSITY OF ULSAN




### MW (GWEC, Global Wind port 2018, 2019.04)

| MW, onshore         | New installations 2017 | Total installations 2017 | New installations 2018 | Total<br>installations 2018 |
|---------------------|------------------------|--------------------------|------------------------|-----------------------------|
| Total onshore       | 48,996                 | 521,774                  | 46,820                 | 568,409                     |
| Americas            | 10,572                 | 123,091                  | 11,940                 | 135,041                     |
| USA                 | 7,017                  | 89,047                   | 7,588                  | 96,635                      |
| Canada              | 341                    | 12,240                   | 566                    | 12,816                      |
| Brazil              | 2,027                  | 12,769                   | 1,939                  | 14,707                      |
| Mexico              | 478                    | 4,006                    | 929                    | 4,935                       |
| Argentina           | 24                     | 228                      | 494                    | 722                         |
| Chile               | 269                    | 1,418                    | 204                    | 1,621                       |
| Other Americas      | 416                    | 3,383                    | 220                    | 3,605                       |
| Africa, Middle East | 632                    | 4,758                    | 962                    | 5,720                       |
| Egypt               | 0                      | 810                      | 380                    | 1,190                       |
| Kenya               | 0                      | 26                       | 310                    | 336                         |
| South Africa        | 618                    | 2,085                    | 0                      | 2,085                       |
| Other Africa        | 14                     | 1,837                    | 272                    | 2,109                       |
| Asia-Pacific        | 23,927                 | 231,419                  | 24,902                 | 256,320                     |
| China               | 18,499                 | 185,604                  | 21,200                 | 206,804                     |
| India               | 4,148                  | 32,938                   | 2,191                  | 35, 129                     |
| Australia           | 501                    | 4,813                    | 549                    | 5,362                       |
| Pakistan            | 199                    | 789                      | 400                    | 1,189                       |
| Japan               | 170                    | 3,399                    | 262                    | 3,661                       |
| South Korea         | 103                    | 1,102                    | 127                    | 1,229                       |
| Vietnam             | 38                     | 197                      | 32                     | 228                         |
| Philippines         | 0                      | 427                      | 0                      | 427                         |
| Thailand            | 218                    | 648                      | 0                      | 648                         |
| Other Asia          | 51                     | 1,502                    | 141                    | 1,643                       |
| Europe              | 13,865                 | 162,506                  | 9,016                  | 171,328                     |
| Germany             | 5,334                  | 50,779                   | 2,402                  | 53,180                      |
| France              | 1,692                  | 13,757                   | 1,563                  | 15,307                      |
| Sweden              | 197                    | 6,499                    | 717                    | 7,216                       |
| United Kingdom      | 2,641                  | 12,412                   | 589                    | 13,001                      |
| Turkey              | 766                    | 6,872                    | 497                    | 7,370                       |
| Other Europe        | 3,235                  | 72,187                   | 3,248                  | 75,435                      |

| MW, offshore   | New installations 2017 | Total<br>installations 2017 | New installations 2018 | Total<br>installations 2018 |
|----------------|------------------------|-----------------------------|------------------------|-----------------------------|
| Total offshore | 4,472                  | 18,658                      | 4,496                  | 23,140                      |
| Europe         | 3,196                  | 15,630                      | 2,661                  | 18,278                      |
| United Kingdom | 1,715                  | 6,651                       | 1,312                  | 7,963                       |
| Germany        | 1,253                  | 5,411                       | 969                    | 6,380                       |
| Belgium        | 165                    | 877                         | 309                    | 1,186                       |
| Denmark        | 0                      | 1,268                       | 61                     | 1,329                       |
| Netherlands    | 0                      | 1,118                       | 0                      | 1,118                       |
| Other Europe   | 63                     | 305                         | 0                      | 302                         |
| Asia-Pacific   | 1,276                  | 2,998                       | 1,835                  | 4,832                       |
| China          | 1,161                  | 2,788                       | 1,800                  | 4,588                       |
| South Korea    | 3                      | 38                          | 35                     | 73                          |
| Other Asia     | 112                    | 172                         | 0                      | 171                         |
| Americas       | 0                      | 30                          | 0                      | 30                          |
| USA            | 0                      | 30                          | 0                      | 30                          |



Market Status 2018 (GWEC, Global Wind Report 2018, 2019.04)



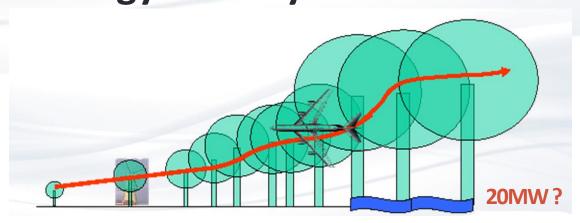
Historic Development of New Installations, GW (GWEC, Global Wind report 2018, 2019.04)



Historic Development of Total Installations, GW (GWEC, Global Wind report 2018, 2019.04)






#### 2. Critical needs for FOWTS in Korea



Quantum Jump for Korea Wind Industry

(System & Supply Chain: HHI, SHI, DSME, STX, Doosan, Hyo sung, UNISON, Hanjin, etc.)

- □ Jobs & the 4th Industrial Revolution
- **■LCOE** (6cent/kWh)
- **Energy Poverty in North Korea**





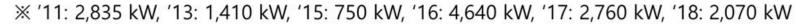




### 2. Critical needs for FOWTS in Korea










### 3. Floating Offshore Wind Farm Projects Planned in the East Sea, Korea

Annual new and cumulative installation capacity, Korea





(Source: 2018 Annual Report on Wind Energy Industry in Korea, Korea Wind Energy Industry Association)







#### 3. 1 Korea's RE 3020

#### Renewable Energy Target: 20% of power generation by 2030

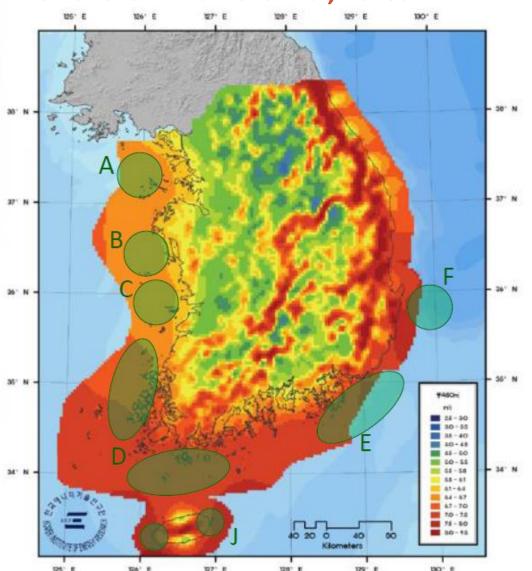
- More than 95% of new capacity is PV and Wind
- Offshore wind is 14 GW and Land-based Wind is 3.7 GW



Method: Citizen participation and large-scale projects






\*Source: KEA and MOTIE, Korea



#### 3. 1 Korea's RE 3020

### UNIVERSITY OF ULSAN

#### **Offshore Wind Potential, Korea**



#### Region A: Incheon

· Planned : Choji

#### Region B: Chungnam

· Planned: Tae-ahn

#### Region C: Jeonbuk (100MW + $\alpha$ )

- Process: Saemangeum (100MW)
- · Planned: Gogunsan

#### Region D : Jeonnam $(1,045MW + \alpha)$

- Process: Duwuri(99MW), Jeonnam-Sinahn(300MW), Jeonnam (96MW), Yeonggwang-Yawol(50MW), Yeonggwang-Changwoo(150MW), Wando(150), Wando-Geumil(200MW)
- Planned: SoughWest Ph.2, Yeonggwang-nakwol, Sinahn-Ui, Anma

#### Region E: Busan/Gyeongnam $(40MW + \alpha)$

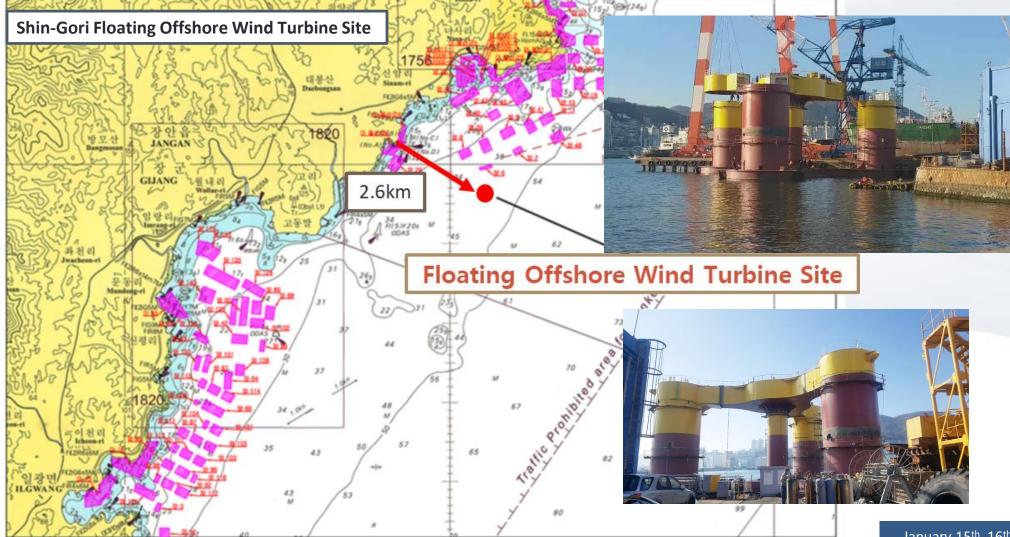
- Process: Cheongsa(40MW)
- Planned : Yokji, Haegi

#### Region F: Ulsan/Gyeongbuk (136MW + α)

- Process: Southeast-shore(136MW)
- Planned: Floating Offshore

#### Region J : Jeju Island (565 MW)

- Process: Hallim(100MW), Daejeong(100MW), Handong(105MW)
- Planned: Hangwon(125MW), Pyoseon(135)




\*Source: FOWF 2019, Ulsan, Korea





### 3.2 Ulsan Shin-Gori 750kW FOWT Pilot Project







### 3.2 Ulsan Shin-Gori 750kW FOWT Pilot Project

- Demonstration Project of a Pilot (750kW) Floating Offshore Wind Turbine in 50m deep







### 3.3 Plan of Floating Offshore Wind Farms in Ulsan

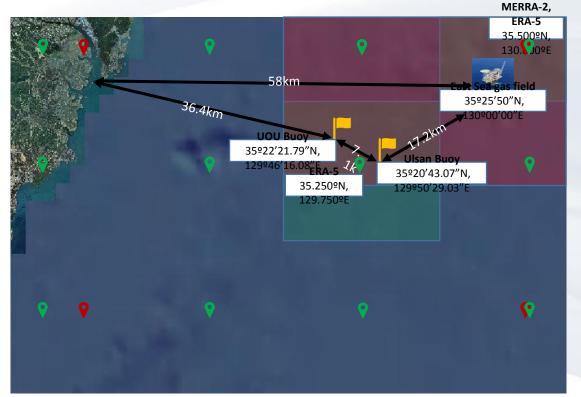








### 3.3 Plan of Floating Offshore Wind Farms in Ulsan


#### LIDAR Measured height



| Specifica          | tions       |
|--------------------|-------------|
| Range              | 40m to 200m |
| Data sampling rate | 1s          |
| Number of height   | 12          |
| Speed accuracy     | 0.1m/s      |
| Speed range        | 0 to 60m/s  |
| Direction accuracy | 2°          |



\*Image: East Seagas field / KNOC



\*source: WINDCUBE v2 / NRG systems

Correct the wind data measured height
40m to 200m -> 87m to 247m (Increase 47m)







- Project Progress
- Supporting Technology, Research & Development
- Building Floating Offshore Wind Farm Roadmap
- Resolving Issue of Navy's Operation Area Overlapping
- Arbitrating between Developers and Fishermen
- Cooperating with Ministries to Amend Irrational or Excessive Regulations
- Plan and schedule
- Site selection, LIDAR deployment, Wind Turbine Conceptual Design (Jul 2018~2020)
- SPC Establishment, licenses acquisition, Financing, etc. (2021~2022)
- EPC of Floating Offshore Farm (2023~2024)
- Demonstration and Operation (2025~)
- Supporting Technology, Research & Development



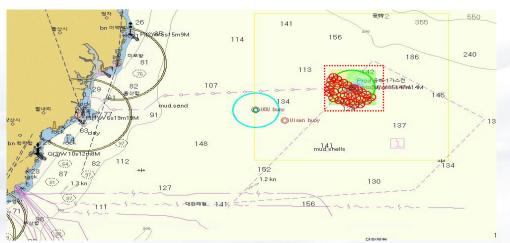


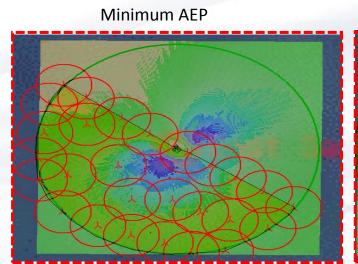


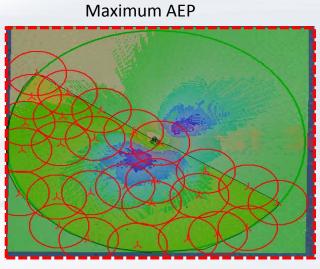
EEZ off the coast, Ulsan, Korea is the best offshore for floating offshore farms

- Environmental conditions for Floating offshore wind farms
- Well-developed shipbuilding and offshore industry
- Grid accessibility
- Possible utilization of Donghae gas field infrastructure
- Public acceptance (EEZ)
- Lots of ports
- o MOTIE(KETEP), Ulsan Metropolitan City, Ulsan TechnoPark and UOU consortium: 200 MW
- o KNOC consortium: 200 MW
- o Five international consortiums
  - CIP: 200 MW, Ulsan White Heron Project
  - GIG: 200 MW, Project Gray Whale
  - Shell: 200 MW, Donghae TwinWind Project
  - EDPR, PPI, Aker: 200 MW, KFWind Project
  - Equinor: 200 MW, Donghae 1 project
  - NAVAL Energies: 200MW (?)







MOTIE(KETEP), Ulsan Metropolitan City, Ulsan TechnoPark & UOU consortiums: Planned FOWT Farm (1)

#### **Expectation of Annual Energy Production - East Sea gas field location**

200MW Floating Offshore Wind Farm



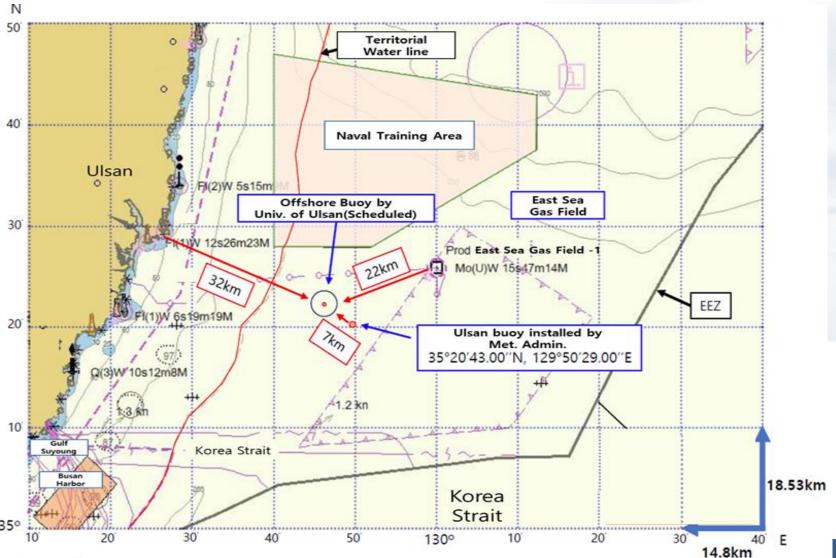




Specification of wind generator: ENERCON 7.5MW x 27 / Rotor diameter = 127 m

Distance between turbines: 1,000 m

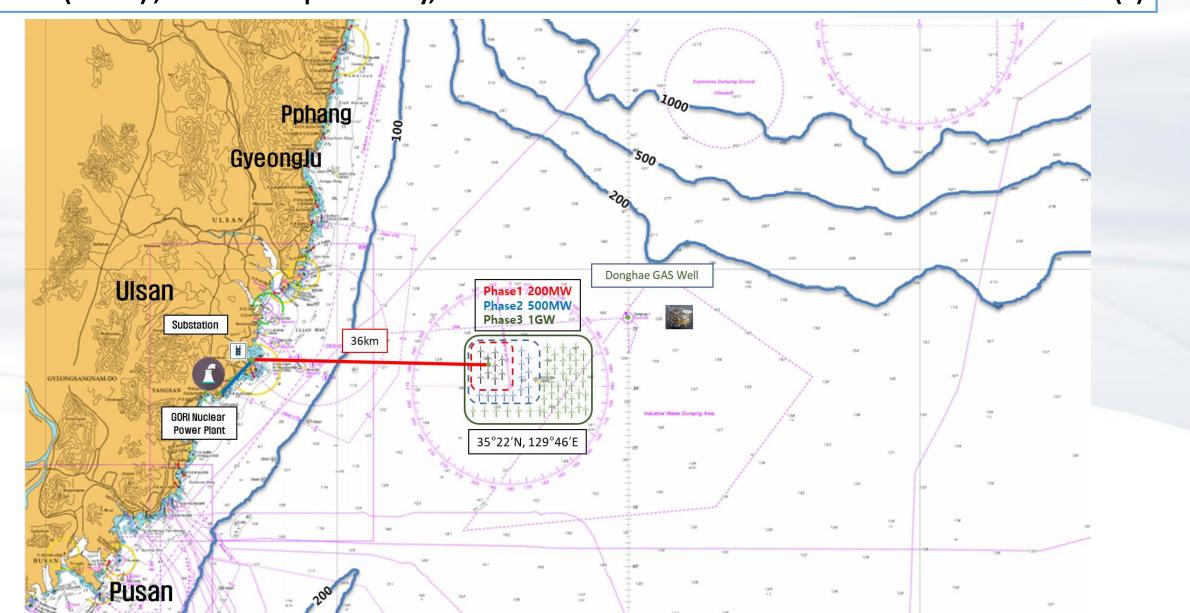
| Items            | Minimum AEP                          | Maximum AEP                            |  |
|------------------|--------------------------------------|----------------------------------------|--|
| MWh/y            | 465,081                              | 681,593                                |  |
| REC Weight =3.44 | 1,599,878                            | 2,344,680                              |  |
| SMP              | KRW39,848,140,080                    | KRW58,398,888,240                      |  |
| REC              | KRW67,287,668,924                    | KRW98,612,551,440                      |  |
| SMP+REC          | KRW107,135,809,004(U\$91,887,533.00) | KRW157,011,439,680 (U\$134,664,535.00) |  |


- SMP: KRW85,680/MWh (2020.01.03)
- REC: KRW42,058/MWh (2020.01.03)
- REC Weight =3.44





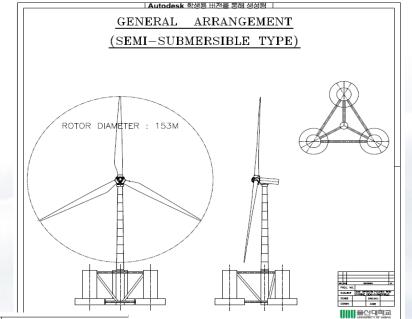
MOTIE(KETEP), Ulsan Metropolitan City, Ulsan TechnoPark & UOU consortiums: Planned FOWT Farm (2)


Location of ocean data buoy of University of Ulsan and 200 MW / 1GW floating offshore wind farm site (planned)

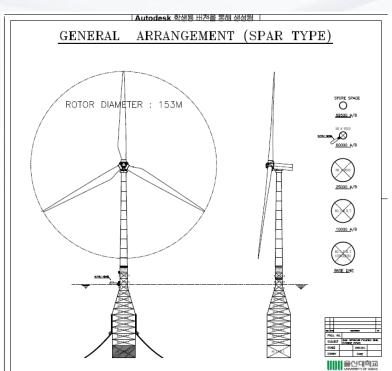


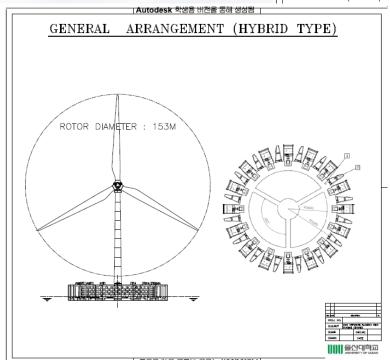


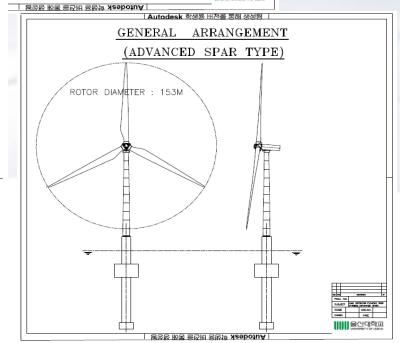



MOTIE(KETEP), Ulsan Metropolitan City, Ulsan TechnoPark & UOU consortiums: Planned FOWT Farm (2)







Unit : kg


|         | UOU_Spar   | UOU_Semi   | UOU_Hybrid | UOU_Advanced Spar |
|---------|------------|------------|------------|-------------------|
| Turbine | 710,151    | 710,151    | 710,151    | 710,151           |
| Floater | 2,600,000  | 4,393,420  | 4,600,000  | 2,428,000         |
| ballast | 10,913,200 | 8,969,147  | 10,150,000 | 3,539,000         |
| Total   | 14,223,351 | 14,072,718 | 15,460,151 | 6,677,151         |















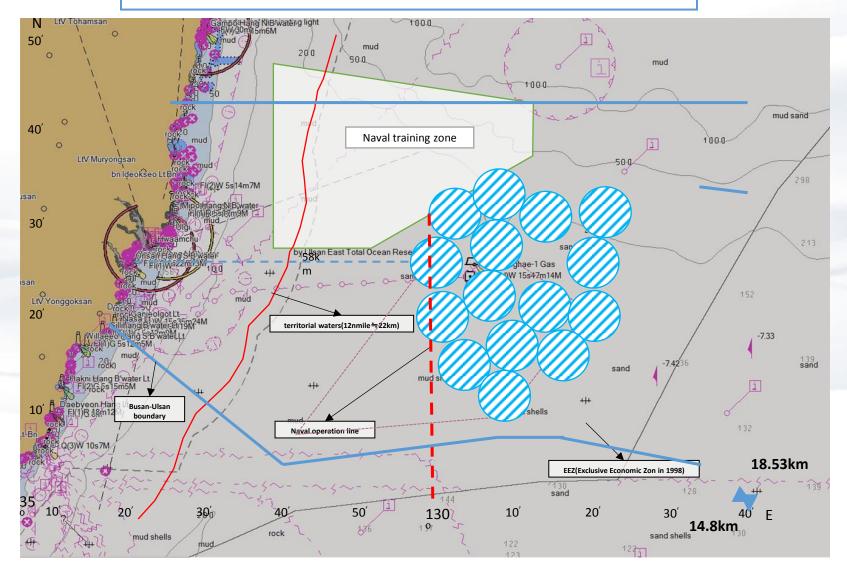




#### Five international consortiums



- Five international consortiums (CIP, Shell, GIG, EDP, Equinor) will take part in the project to build floating wind farms through cooperation with the city of Ulsan, South Korea.
- The city has been involved in green energy programs with government support.


\*Source: Ulsan Metropolitan Government, Korea







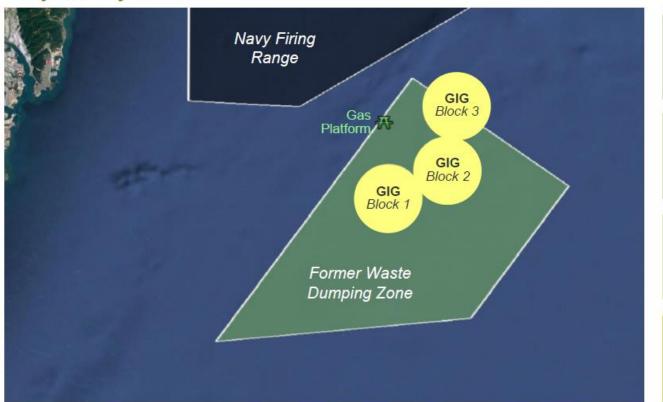
#### **5** international consortiums : Planned FOWT Farm







### **Project Gray Whale**


Project overview



Green Investment Group

Project Gray Whale is a greenfield 1.5GW floating OSW farm development across 3 blocks off the east of Ulsan coastline

#### **Project Gray Whale**



#### Strategic locations

**Robust wind condition** 

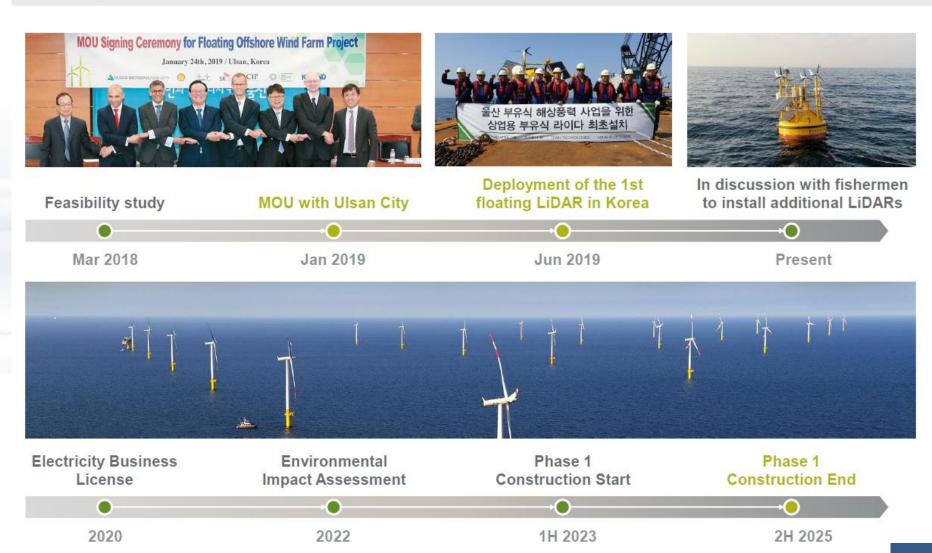
Sufficient distance from **Navy firing range** 

150m-deep flat seabed allowing for any types of buoy

Former waste dump into green energy park



\*Source: FOWF 2019, Ulsan, Korea






#### **Project Gray Whale** Development timeline



Green Investment Group





\*Source: FOWF 2019, Ulsan, Korea





#### **Project Overview**

#### **Ulsan White Heron Project**





#### Key facts

| Proposal |  |
|----------|--|

- CIP proposes to construct up to 1.2 GW offshore wind in Ulsan.
- In order to secure a sustainable job creation in the area, it is proposed to split the construction in several phases.
- The following three phases could be developed as 3 x 400 MW large-scale floating wind projects.

#### **Local Content**

- · Local production of all major steel components, including:
  - · Floating foundations, transition pieces and mooring lines
  - Turbine towers
- Use of local harbours and onshore civil contractors

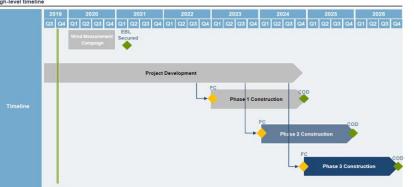
#### Site

- Expected wind speeds of ~8.5 m/s
- Floating foundation site water depths between 100-200m
- Potential suitable harbour (Ports in Ulsan)

#### **Technology**

- · Leading WTG supplier with proven offshore manufacturing experience will be chosen
- Use the TetraSpar floating foundation developed by wind energy pioneer Henrik Stiesdal.

### Timeline


- Steady flow of construction projects until 2027
- COD Phase 1 Site: 2025
- COD Phase 2 Site: 2026
- COD Phase 3 Site: 2027
- Steady flow of O&M until 2047

#### Site location



#### Project overview

| Phase | Sites                                    | Capacity | COD  | Depth | Wind     |
|-------|------------------------------------------|----------|------|-------|----------|
| 1     | Ulsan Floating Site Phase 1<br>(East I)  | 400MW    | 2025 | 134m  | ~8.3 m/s |
| 2     | Ulsan Floating Site Phase 2<br>(East II) | 400MW    | 2026 | 143m  | ~8.3 m/s |
| 3     | Ulsan Floating Site Phase 3 (East III)   | 400MW    | 2027 | 146m  | ~8.5 m/s |



### **Stiesdal**













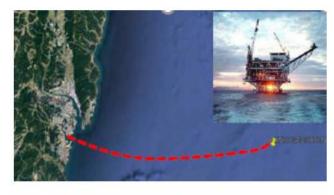
#### ...and WindFloat Atlantic



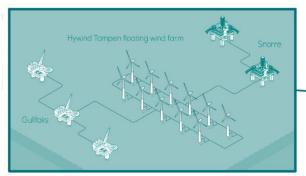


#### Donghae 1 Project

equinor


- ➤ 200 MW Donghae 1 Project
- > 58 km to shore
- > Water depth ~ 145 m
- MoU and consortium agreement signed between KNOC/Equinor/EWP
- > Wind measurements and feasibility studies ongoing
- > FID/COD 2022/2024

#### Firefly Project


- ➤ Development size 800MW
- > 60-70 km to shore
- > Water depth ~ 230 m
- > Wind Speed 8.0-8.2 m/s
- > Feasibility study 2020 / Concept selection 2021/ FEED 2022/2023
- > FID/COD 2023/ 2025-2026



\*Source : FOWF 2019, Ulsan, Korea







11 wind turbines between Snorre and Gullfaks

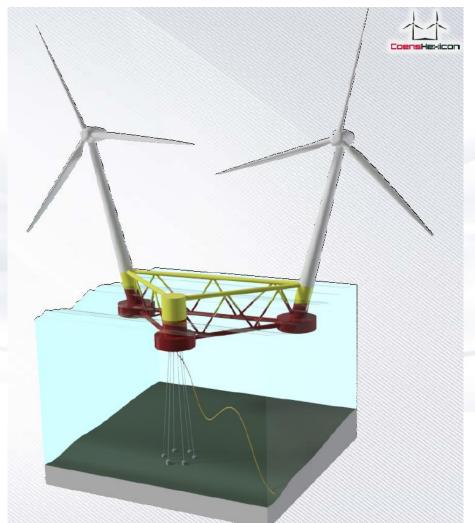
Concrete substructures

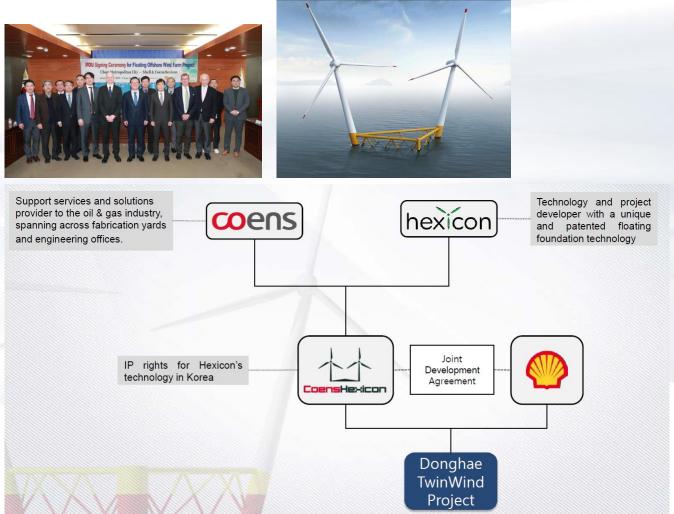
Considerable CO2 emission reductions

Combined capacity of

88MW










### **Donghae TwinWind Project**







\*Source : FOWF 2019, Ulsan, Korea





### OUR OFFSHORE WIND OFFERING FOR SOUTH KOREA



- Local conditions in Ulsan are very favourable for floating offshore wind:
  - Constant wind around 8m/s
  - · Suitable water depth
  - Advanced shipbuilding industry
  - Good grid conditions and availability
  - Strong political support
- Naval Energies has already conducted feasibility studies in the East Sea as well as a screening of industrial means in South Korea





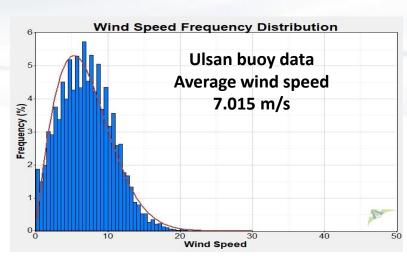




| From<br>(345 kV Substation) |                                                                                                                                                                      | Substation                          | To<br>(Load & Other 154kV<br>Substation)       |                                                        |                                                                                                                       |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| (Name/Bus#)                 | Transformer<br>( <mark>Spare</mark> /Total capacity-<br>MVA)                                                                                                         | Candidate<br>(154 kV<br>Substation) | (Name/Bus#)                                    | T/L<br>( <mark>Spare</mark> /Total<br>capacity-MVA)    | Remarks                                                                                                               |  |
| Shin Onsan 3<br>(9300)      | 1 <sup>st</sup> Trans. <b>265</b> /500<br>2 <sup>nd</sup> Trans. <b>265</b> /500<br>3 <sup>rd</sup> Trans. <b>260</b> /500<br>4 <sup>th</sup> Trans. <b>260</b> /500 | Shin Onsan 1<br>(9310)              | OnSan(9311)<br>YongAm(9335)<br>DangWeol (9340) | <b>734</b> /1040<br><b>813</b> /894<br><b>330</b> /472 | Total trans. spare capacity: 1,050 MVA Load spare capacity: 1,877 MVA Close to the Gori NP1 (Nuclear power plant)     |  |
| DongUlsan 3<br>(9850)       | 1 <sup>st</sup> Trans. <b>350</b> /500<br>2 <sup>nd</sup> Trans. <b>350</b> /500<br>3 <sup>rd</sup> Trans. <b>350</b> /500                                           | Dong Ulsan 1<br>(9860)              | MaeGok(9885)<br>SanHa(9920)<br>HyoMoon(9980)   | <b>706</b> /894<br><b>796</b> /904<br><b>712</b> /828  | Total trans. spare capacity: 1,050 MVA Load spare capacity: 2,214 MVA Close to the WeolSung NP3 (Nuclear power plant) |  |

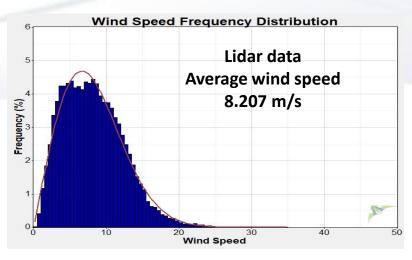





## **EERA**3.5 Comparison with Measured Data and Reanalysis Data in East sea UNIVERSITY OF ULSAN



### **Annual Energy Production**


#### **Minimum AEP**

| Meta               | Information                            |
|--------------------|----------------------------------------|
| Data               | Ulsan buoy                             |
| Interval           | 1-hour                                 |
| Measure height     | 4.3m                                   |
| Power law exponent |                                        |
| Coordinate         | 35.35ºN, 129.84ºE                      |
| Measure period     | 2016.01.01 00:00 ~<br>2020.01.01 00:00 |
| Management         | Meteorological Agency                  |



#### **Maximum AEP**

| Meta                          | Information                            |
|-------------------------------|----------------------------------------|
| Data East Sea gas field Lidar |                                        |
| Interval                      | 10-min                                 |
| Measure height                | 87m – 247m                             |
| Power law exponent            | 0.0321                                 |
| Coordinate                    | 35.43ºN, 130.00ºE                      |
| Measure period                | 2018.11.01 00:00 ~<br>2019.11.01 00:00 |
| Management                    | KNOC                                   |





VS





#### 3.5 Comparison with Measured Data and Reanalysis Data

| Ulsan 6m-NOMAD Weather buoy  |
|------------------------------|
| Average Wind Speed (Weibull) |
| 11.11m/s                     |

| ERA-5(ECMWF)                 |  |
|------------------------------|--|
| Average Wind Speed (Weibull) |  |
| 8.72m/s                      |  |

| MERRA-2(NASA) |                              |  |
|---------------|------------------------------|--|
|               | Average Wind Speed (Weibull) |  |
|               | 8.73m/s                      |  |

Table 5. 10-minutes average Extreme wind speed at hub height (90m)

| Ulsan 6m-NOMAD Weather buoy |                |  |  |  |
|-----------------------------|----------------|--|--|--|
| Scale=1.802, Mode=19.798    |                |  |  |  |
| Period                      | Max Wind Speed |  |  |  |
| [yr]                        | [m/s]          |  |  |  |
| 5                           | 33.09          |  |  |  |
| 10                          | 35.08          |  |  |  |
| 15                          | 36.21          |  |  |  |
| 20                          | 36.99          |  |  |  |
| 30                          | 38.09          |  |  |  |
| 50                          | 39.46          |  |  |  |
| 100                         | 41.31          |  |  |  |
| 200                         | 43.16          |  |  |  |
| 500                         | 45.59          |  |  |  |
| 1000                        | 47.43          |  |  |  |

Source: Ulsan 6m-NOMAD Weather buoy Location: N35.345 E129.841 Measure period: 3 years  $(2016-01-01 \sim 2018-12-31)$ 

| ERA-5                    |                |  |  |  |
|--------------------------|----------------|--|--|--|
| Scale=3.540, Mode=25.259 |                |  |  |  |
| Period                   | Max Wind Speed |  |  |  |
| [yr]                     | [m/s]          |  |  |  |
| 5                        | 31.81          |  |  |  |
| 10                       | 34.57          |  |  |  |
| 15                       | 36.13          |  |  |  |
| 20                       | 37.22          |  |  |  |
| 30                       | 38.75          |  |  |  |
| 50                       | 40.65          |  |  |  |
| 100                      | 43.23          |  |  |  |
| 200                      | 45.79          |  |  |  |
| 500                      | 49.17          |  |  |  |
| 1000                     | 51.72          |  |  |  |

Source: ERA-5 (ECMWF) Location: N35.250 E129.750 Analysis period: 8 years  $(2010-01-01 \sim 2017-12-31)$ 

| MERRA-2                  |                |  |  |  |
|--------------------------|----------------|--|--|--|
| Scale=3.511, Mode=22.528 |                |  |  |  |
| Period                   | Max Wind Speed |  |  |  |
| [yr]                     | [m/s]          |  |  |  |
| 5                        | 31.21          |  |  |  |
| 10                       | 34.17          |  |  |  |
| 15                       | 35.84          |  |  |  |
| 20                       | 37.01          |  |  |  |
| 30                       | 38.64          |  |  |  |
| 50                       | 40.68          |  |  |  |
| 100                      | 43.43          |  |  |  |
| 200                      | 46.18          |  |  |  |
| 500                      | 49.80          |  |  |  |
| 1000                     | 52.53          |  |  |  |

Source: MERRA-2 (NASA) Location: N35.500 E130.000 Analysis period: 39 years  $(1980-01-01 \sim 2018-12-31)$ 







## THANK YOU.

This project is being supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) and by the Ulsan Metropolitan Government, Korea. Also we deliver many thanks to the international developers and wind industries: Shell, CIP, GIG, EDPR, PPI, Aker, Equinor, KNOC, SK enc, Coens, HEXICON, Stiesdal, Ulsan Technopark, etc.

