Consequences of load mitigation control strategies for a floating wind turbine

Chern Fong Lee, NTNU Erin E. Bachynski, NTNU (erin.bachynski@ntnu.no)

Amir R. Nejad, NTNU

Control-induced resonance

Load-mitigation control strategies for FWTs

- AD: Nacelle velocity feedback (added damping)
 - Lackner, 2007
 - Modify rotor speed reference with nacelle velocity measurement

Load-mitigation control strategies for FWTs

- ES: Energy shaping controller
 - Pedersen, 2017
 - Modify rotor speed reference using the deviation of nacelle velocity from its value in equilibrium

Load-mitigation control strategies for FWTs

- AD: Nacelle velocity feedback (added damping)
 - Lackner, 2007
 - Modify rotor speed reference with nacelle velocity measurement
- ES w/o IPC: Energy shaping controller
 - Pedersen, 2017
- ES w/IPC: Energy shaping controller with IPC
 - Try to reduce individual blade root bending moments
 - IPC follows Lackner and van Kuik, 2009

Known consequences of load-mitigating control strategies

- AD: reduction in pitch motion, increased variations in power and rotor speed
- ES: stable control, expected reductions in pitch motions
- IPC: reduce blade root bending moments, increase pitch actuator use

What about the drivetrain?

Outline

- Methodology
- Global analysis results
- Drivetrain loads
- Conclusions

Methodology: Decoupled simulations

Performance indicators

- Tower base 1-hr fatigue damage
 - Stresses from global analysis, rainflow counting, SN curve, Miner's rule
- Gear root 1-hr fatigue damage
 - Forces from MBS analysis, load duration distribution method
- Bearing 1-hr fatigue damage
 - Forces from MBS analysis, load duration distribution method
- Standard deviation of power output
 - Direct result from global analysis

Global motions, EC1

Tower base fore-aft bending moments

Gearbox topology

NTNU

Sun gear circumferential force

Tower top side-side force

Bearing INPB

axial

radial

Conclusions

- Global and drivetrain responses of a spar floating wind turbine
- Three control modifications
 - active damping (AD)
 - energy shaping control (ES w/o IPC),
 - energy shaping control with individual blade pitch (ES w/IPC).
- Improved platform motion responses in surge and pitch
- ES adds some responses at i.e. wave frequency
- IPC reduces blade root flap-wise bending, but introduces excitation of tower top shear force at rotor frequency.
- The reduced blade root moment therefore comes with a cost of increased radial load resonance in drivetrain gears and bearings.
- Drivetrain should be considered when assessing control performance

