

REAL TIME HYBRID MODELLING

APPLIED TO A FLOATING OFFSHORE WIND TURBINE

USING A DUCTED FAN

François PETRIE (fpetrie@oceanide.net)

Oceanide

16th of January 2020

INTRODUCTION

- Basin model tests consist in
 - Modelling the complete system at a reduced scale
 - Submit it to site environmental conditions (waves, wind & current)
 - Measure quantities of interest (motions, accelerations, mooring tensions...)
- They are usually carried out at FOWT design stage to
 - 1. Measure quantities difficult to capture numerically (viscous effects...)
 - 2. Validate the design

INTRODUCTION

- For FOWT modelling in basin, 2 scaling laws shall be used but are not compatible
 - Froude similitude for the hydrodynamics (submerged part)
 - Reynolds similitude for the aerodynamics (emerged part)
- 3 alternatives can be used

Hydro	Aero	Pro & Cons
In basin	In basin With wind	Uncertain
In basin	Numerically Afterwards	Does not allow « third party » control
In basin	In basin Numerically	So called « RTHM » The best technical choice

RTHM APPLIED TO FOWT

THE JIP

- RTHM has already been applied to FOWT's
- But more "feedbacks" are still needed
- A JIP was initiated by OCEANIDE & PRINCIPIA in 2019 to clarify
 - How reliable and robust such a methodology is
 - How it shall be specified / controlled
 - Which accuracy / gain compared to other methodologies can be expected
 - ...
- The program included
 - Development
 - Qualification on a bench outside basin (static + dynamic tests)
 - Application to a "real" case (tests in basin)
 - Synthesis & recommendations
- The presentation will focus on a few results

CASE STUDY

- Floater : DeepCwind (OC4)
- Turbine : NREL 5MW
- Actuator : ducted fan
- Scale : 1/32
- Software : DeepLinesWind

	Global COG location		Mass	Inertia at global COG	Radius of gyration	
	X (m)	Y (m)	Z (m)	(t)	l _{yy} (t.m²)	(m)
Floater	0.00	0.00	6.52	13 659	7.070E+06	-
Tower	0.00	0.00	63.38	245	8.650E+05	-
RNA	-0.46	0.00	110.11	349	3.522E+06	-
Total measured	-0.01	0.00	10.04	14 253	1.146E+07	28.35
Total specified	-0.01	0.00	10.06	14 260	1.129E+07	28.14
Deviation (%)	-	-	-0.2%	0.0%	1.5%	0.8%

OCEANIDE FACILITY DESCRIPTION

- BGO FIRST basin : 40m x 16m x 0 to 4,8m
- Waves + Current + Wind capabilities
- Operated by Oceanide since 1998
- Located France, in « Côte d'Azur »

Eolfloat

Kieggers Flak

PGL

SOFTWARE DESCRIPTION

- Software DeepLinesWind operated by Principia
- Computing the aerodynamic loads with
 - Full 3D turbulent wind (in time and space)
 - Rigid blades & mast
- Using
 - NREL controller
 - Real-Time measured 6D motions / speeds / accelerations at hub

STEP 1 : OPEN LOOP

STEP 2 : SIMPLIFIED LOOP

2 ways coupling but turbine controller not in the loop

STEP 3 : COMPLETE LOOP

2 ways coupling with turbine controller in the loop

DUCTED FAN PERFORMANCE

DUCTED FAN PERFORMANCE

- Obtained
 - after measurement of the ducted fan transfer function (TF) in static
 - application of the load time series in basin on the floating FOWT, without PID
- => Very good repeatibility, and no influence of floater motions on fan TF

Wind speed 12m/s

STEP 3 : MODIFIED COMPLETE LOOP

SOME RESULTS

- Results are presented hereafter
 - For each of the 3 different steps : open-loop, simplified loop, modified complete loop
 - For 2 different Hs : 5m and 10m
 - For 1 speed : 12m/s (rated speed, the one for which the turbine controller is the most active)
 - For collinear wind / waves

FLOATER PITCH RESPONSE

FLOATER SURGE RESPONSE

CONCLUSION

- RTHM technique has been qualified by Oceanide/Principia on a typical FOWT using a ducted fan and DeepLinesWind software
- Extensive qualification tests have shown very good performances
 - Thurst force is applied with an accuracy of 1%, very good repeatability
 - Software-in-the-loop can be used for LF and WF
 - For HF (1P, 3P modes), loads can be imposed, but further work is required if Software-in-the-loop is needed at such frequencies (main interest is for TLP type floaters)
- The system was designed to be extended to more DOFs. Couplings are less than 2% even for very closeby ducted fans.

Turbune 1 (N)	Turbine 3 alone (N)	Turbine 3 aside Turbine 1 (N)	Diff (%)
10	7,73	7,73	0,0%
10	18,35	18,25	-0,5%
10	28,85	28,52	-1,1%
17	7,73	7,76	0,4%
17	18,35	18,31	-0,2%
17	28,85	28,33	-1,8%
30	7,73	7,71	-0,3%
30	18,35	18,15	-1,1%
30	28,85	28,72	-0,5%

- WF floater response is governed by Waves
- Wind loads have a significant impact on floater LF response
- <u>OPEN LOOP :</u> conservative in most cases
- <u>SIMPLIFIED LOOP</u>: can provide good results => this can be an interesting alternative when the turbine controller is not fixed yet or not available
- <u>COMPLETE LOOP :</u> requires turbine controller

These conclusions are based on a few results on an oversized floater (DeepCwind model + NREL 5MW). Couplings should be larger for a more competitive floater but similar trends are expected

- This project was initiated in April. 2019 and will be completed in March. 2020
- The authors wish to thank **Doris Group, Engie, Saipem** and **Technip France** for their financial & technical support during this JIP
- A second phase is under discussion, new comers are welcome
- See also OMAE2020-18076
- Contact
 - François PETRIE
 - <u>contact@oceanide.net</u>
 - +33 (0)4 94 10 97 40