EERA DeepWind'2020

15 - 17 January 2020, Trondheim, Norway

Experimental investigations on the fatigue resistance of automatically welded tubular X-joints for jacket support structures

Prof. Peter Schaumann, LUH **Karsten Schürmann**, LUH Dr. Andreas Pittner, BAM Prof. Michael Rethmeier, BAM

1 l Leibniz 102 Universität 1004 Hannover

Institute for Steel Construction Prof. Dr.-Ing. Peter Schaumann

Motivation

Innovative standardised jacket foundations

Motivation

Innovative standardised jacket foundations

Outline

Geometrical Dimensions

Weld Seam Preparation

Automatically Welding Procedure

Laser Scanning of Weld Geometry

- Scanning of weld geometry utilizing a blue line laser
- Input for numerical analysis

Reproducibility of Weld Geometry

 Comparing weld geometry of 28 tubular X-joints

Reproducibility of Weld Geometry

Test Setup of Axial Fatigue Tests

High cycle fatigue range;
 R = 0.1; f = 5 Hz

l l Leibniz i o 2 Universität loo 4 Hannover

Test Setup of Axial Fatigue Tests

- High cycle fatigue range;
 R = 0.1; f = 5 Hz
- Through thickness crack
 →Loss of over/under pressure

Test Setup of Axial Fatigue Tests

- High cycle fatigue range;
 R = 0.1; f = 5 Hz
- Through thickness crack
 →Loss of over/under pressure
- Optical digitization of damage development

Fatigue Damage Digitization

Fatigue Damage Digitization

/ l Leibniz i o 2 Universität loo 4 Hannover

Hannover

resistance of automatically welded tubular X-joints

Karsten Schürmann – Experimental investigations on the fatigue resistance of automatically welded tubular X-joints

eibniz

Universität

lannover

F

Karsten Schürmann – Experimental investigations on the fatigue resistance of automatically welded tubular X-joints

eibniz

Universität

lannover

Karsten Schürmann – Experimental investigations on the fatigue resistance of automatically welded tubular X-joints

eibniz

Universität

lannover

Summary and Outlook

Fatigue resistance of automatically welded tubular X-joints

- 32 fatigue tests on single- and double-sided automatically welded X-joints
- Increased S-N curve (FAT126) for the robot welded tubular X-joints
- Monitoring of damage/crack development utilizing DIC possible

l l Leibniz i o 2 Universität i o 4 Hannover

Thank you for your attention!

www.stahlbau.uni-hannover.de

www.forwind.de

Thank you to our project partners and supporters!

Supported by:

*

Federal Ministry of Economics and Technology

The IGF project 19104 N of the FOSTA was supported via AiF within the programme for promoting the Industrial Collective Research (IGF) of the German Ministry of Economic Affairs and Energy (BMWi), based on a resolution of the German Parliament.

on the basis of a decision by the German Bundestag

