Determination of the Yaw Moment of a Downwind-coned Rotor under Yawed Conditions:

Limitations of a Blade Element Momentum Theory Method

Christian Schulz

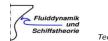
Supported by Stefan Netzband Moustafa Abdel-Maksoud

christian.schulz@tuhh.de Institute for Fluid Dynamics and Ship Theory Hamburg University of Technology

ΜΟΤΙVΑΤΙΟΝ

Performance of a passively yawing FOWT dependent on

- Wave loads
- Current loads
- Aerodynamic loads on tower
- Rotor yaw moment


Leading question:

Can we use a state-of-the art Blade Element Momentum Theory method to predict the yaw moment?

This work's approach:

Simulating the aerodynamic loads on TUHH model wind turbine presented @ DEEPWIND 2019 using AeroDyn

OVERVIEW: DETERMINING THE YAW MOMENT OF A DOWNWIND-CONED ROTOR

Determining the Yaw Moment of a Downwind-coned Rotor

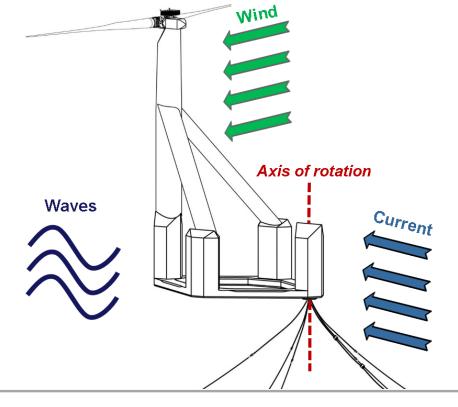
- **1** Motivation
- 2 Introduction and background
 - Alignment principle of passively yawing FOWTs
 - TUHH model wind turbine
 - Notes on the simulation model
- **3** Results: Comparison of aerodynamic loads
- 4 Conclusion

INTRODUCTION: PASSIVELY YAWING FOWTS

Characteristics

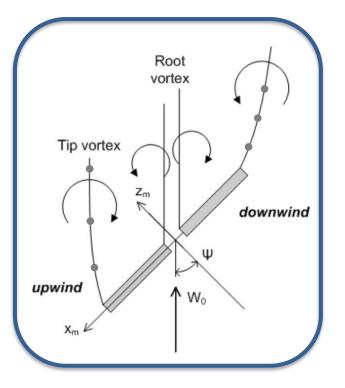
- Numerous designs
- Mostly semisubmersible platforms
- Single-Point-Mooring
- No yaw bearing (except SATH)

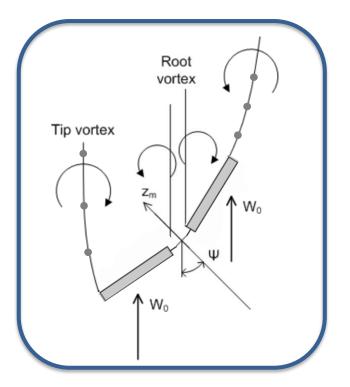
- Unconventional tower constructions become feasible
- Cost reduction due to reduced weight and structural loads possible
 - Multi-rotor designs become feasible



INTRODUCTION : PASSIVE YAW MECHANISM

Major influence factors for passive yaw motions


- Hydrodynamic loads
 - Wave loads
 - Current drag forces
- Aerodynamic loads
 - Tower lift and drag forces
 - Rotor yaw moment
 - Rotor thrust negligible
- Loads affected by environmental conditions
 - Wind speed
 - Current speed, wave parameters
 - Wind-current misalignment



BACKGROUND: ORIGIN OF THE ROTOR YAW MOMENT

1. Lower induction at the upwind side

2. Higher inflow angle on the upwind side

[W. HAANS, WIND TURBINE AERODYNAMICS IN YAW – UNRAVELLING THE MEASURED ROTOR WAKE (SLIGHTLY MODIFIED)]

OVERVIEW: DETERMINING THE YAW MOMENT OF A DOWNWIND-CONED ROTOR

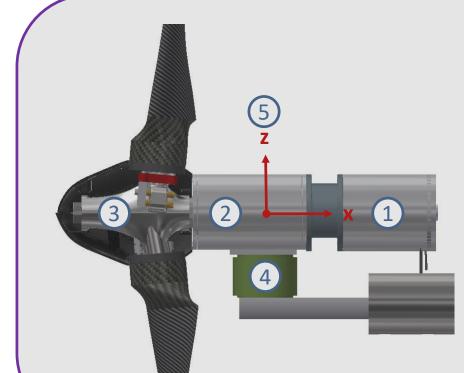
Determining the Yaw Moment of a Downwind-coned Rotor

1 Motivation

2 Introduction and background

- Alignment principle of passively yawing FOWTs
- TUHH model wind turbine
- Notes on the simulation model
- **3** Results: Comparison of aerodynamic loads
- 4 Conclusion

TUHH MODEL WIND TURBINE


TUHH Experimental Wind Turbine	
Rated power	130 W
Rotor diameter	0.925 m
Number of blades	2
Downwind cone angle	5°
Rated wind speed	9.3 m/s
Rated rotational speed	1200 RPM
Wind tunnel size	2 x 3 m
Blockage ratio	11.2 %
Sensor	6C - balance

TUHH MODEL WIND TURBINE: NACELLE, SENSOR AND COORDINATE SYSTEM

Components and sensor

- Generator
- Slip ring and main bearings
- Hub
- 6 component force/moment sensor
 - Uncertainty below 2% in torque and 0 1% in thrust at rated conditions
 - Repeatability error of measurements: 0.5% in thrust, 1% in torque
- Coordinate system for measurements DEEPWIND 2015

Coordinate system is applied to simulations

OVERVIEW: DETERMINING THE YAW MOMENT OF A DOWNWIND-CONED ROTOR

Determining the Yaw Moment of a Downwind-coned Rotor

1 Motivation

2 Introduction and background

- Alignment principle of passively yawing FOWTs
- TUHH model wind turbine
- Notes on the simulation model
- **3** Results: Comparison of aerodynamic loads
- 4 Conclusion

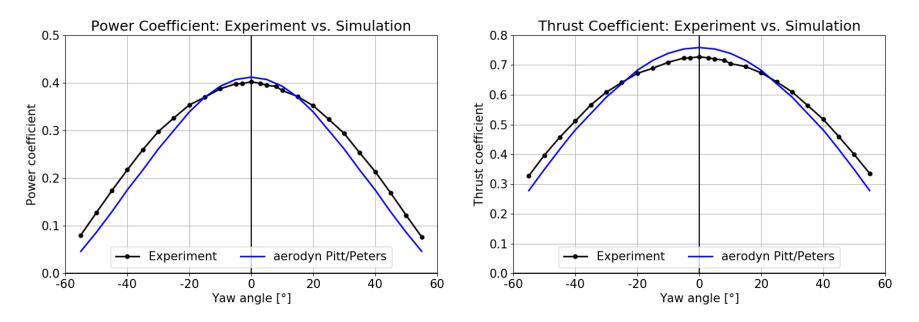
BACKGROUND: SIMULATION METHOD

AeroDyn simulation

- Blade Element Momentum Theory method
 - o Prantl tip and hub loss model
 - o Beddoes-Leishman unsteady airfoil aerodynamics model
 - Minemma/Pierce variant
 - Pitt/Peters wake skew model
- Discretization
 - o 19 blade sections
 - o 3.6° per time step
- Polars
 - Calculated by Xfoil for Re 150k
 - good agreement with experimental Data
 - Nearly constant Reynolds number over blade span

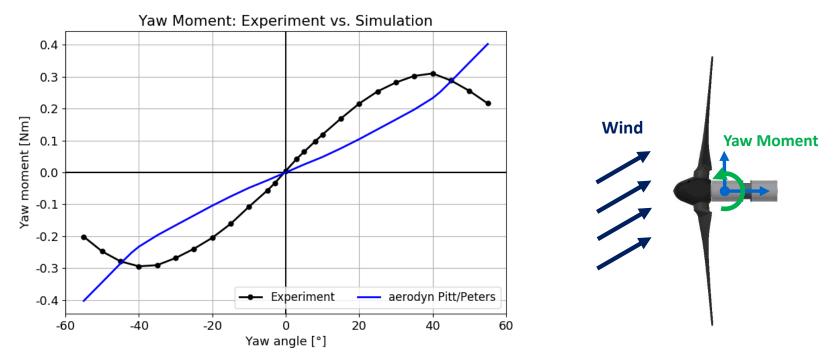
16.01.2020

OVERVIEW: DETERMINING THE YAW MOMENT OF A DOWNWIND-CONED ROTOR

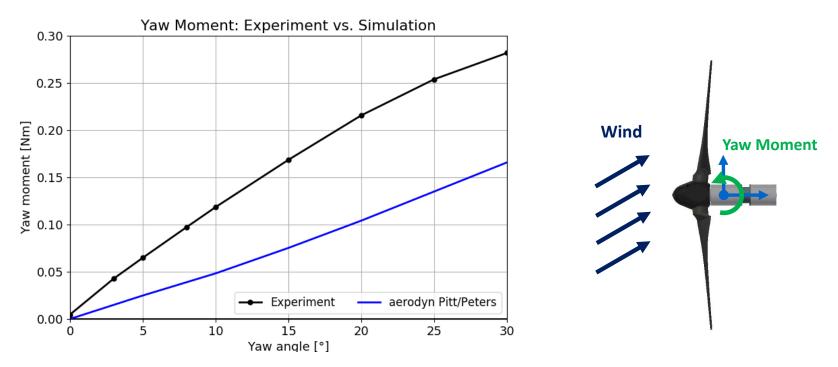

Determining the Yaw Moment of a Downwind-coned Rotor

- **1** Motivation
- 2 Introduction and background
 - Alignment principle of passively yawing FOWTs
 - TUHH model wind turbine
 - Notes on the simulation model
- **3** Results: Comparison of aerodynamic loads
- 4 Conclusion

RESULTS: POWER AND THRUST



- Deviations at zero yaw angle: Power 3%, Thrust 5%
- Decrease of power and thrust to strong at higher yaw angles
- Small deviations at lower yaw angles

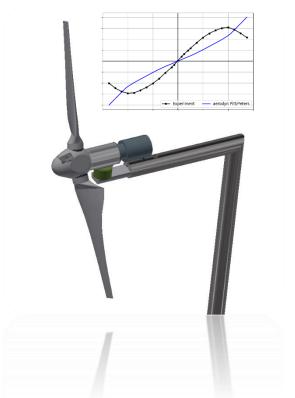

RESULTS: YAW MOMENT

- Different principal behavior
- Considerable deviations in the yaw angle range 0° to 30°

RESULTS: YAW MOMENT AT RELEVANT ANGLES FOR PASSIVELY YAWING FOWT

- Slope at lower yaw angles underestimated by more then 50%
- Consequence: Overestimation of yaw misalignment (of a passively yawing FOWT)

OVERVIEW: DETERMINING THE YAW MOMENT OF A DOWNWIND-CONED ROTOR


Determining the Yaw Moment of a Downwind-coned Rotor

- **1** Motivation
- 2 Introduction and background
 - Alignment principle of passively yawing FOWTs
 - TUHH model wind turbine
 - Notes on the simulation model
- **3** Results: Comparison of aerodynamic loads
- 4 Conclusion

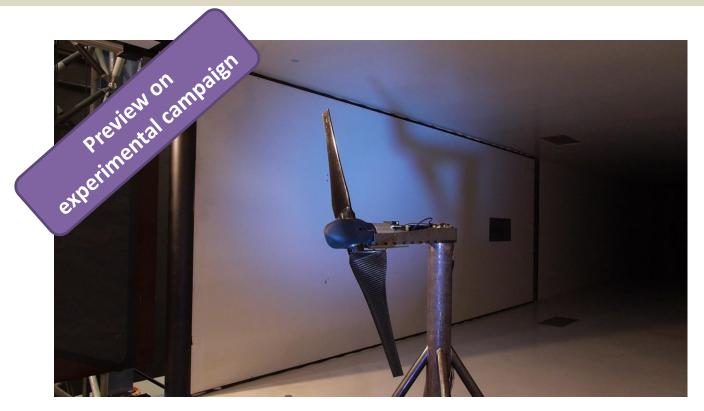
CONCLUSION

Conclusion

- BEM simulations of TUHH Model Wind Turbine under yawed conditions performed
- Reasonable agreement in power and thrust at intermediate yaw angles
- Strong deviations in principal shape and slope of yaw moment
 - Validity of aerodynamic loads calculated with Pitt/Peters model very limited in this case
 - Passively yawing FOWT designers should validate their model or use higher fidelity methods
 - Other wake skew models should be tested in the future

Acknowledgement

The research project is financially supported by the BMWi



Federal Ministry for Economic Affairs and Energy

THANK YOU FOR YOUR ATTENTION

Christian W. Schulz

