FROM RESEARCH TO INDUSTRY

FAR OFF-SHORE WIND ENERGY-BASED HYDROGEN PRODUCTION:

TECHNOLOGICAL ASSESSMENT AND MARKET VALUATION DESIGNS

M. Woznicki, G. Le Solliec, R. Loisel

- Context
- MHyWind Overview
- Components Models Overview
- Case Studies
- Future work
- Questions ?

CONTEXT

- Offshore wind **capacity** is **increasing**, **turbines** are growing **bigger**, and **floating** technologies are on their way
- Going further offshore will unlock access to a **tremendous amount of energy**
- Transmission over long distances may be an issue ٠
- 98% of H₂ is produced from fossil fuels => Production of 1 kg emits 10 kg of CO₂ (for oil refining, ammonia and fertilizers production, metallurgy, etc...)
- H₂ is an energy vector and can provide, via fuel cells (+storage vessels), various electrical services : grid services, energy storage, mobility...
- When produced via water electrolysis with renewable energy sources, orders of magnitude:

H ₂ Energy content (LHV)	33.3 kWh.kg ⁻¹	Exemple	ICE (gasoline) car	Fuel cell car (H ₂ from RE source)
Energy requirements (η = 0.6) for production	55.5 kWh.kg ⁻¹	Fuel energy content	12.06 kWh.kg ⁻¹	33.3 kWh.kg ⁻¹
Compression energy for storage	350bar: 2.1 kWh.kg ⁻¹ 700bar: 3.5 kWh.kg ⁻¹	Engine efficiency	≈0.35	≈0.6 . 0.95 (η _{FC} . η _{EM})
		Fuel consumption (100km)	5L / 3.68kg	1kg
		CO ₂ emissions (100km)	≈10kg	≈0g

- Questions:
 - How much H₂ can be produced with Offshore Wind ?
 - How to size the plants (OWF, water electrolysis system (WE)) and define their architectures?
 - What WE technologies could be used ? .
 - What strategies and levers could help minimizing H₂ production costs ? •

How wind energy can be used to avoid these emissions ? Can coupling of Hydrogen and Wind be mutually beneficial?

MHYWIND OVERVIEW

Ceatech

SIZING, Min (LCoH₂), Volume, Production aligned to forecasted demand, etc...

COMPONENTS MODELS – OVERVIEW – WIND FARM

Offshore wind farm power

$$U_{HH}(z,t) = U_{z_0}(t) \cdot \left(\frac{z}{z_0}\right)^{\alpha} [m.s^{-1}]$$

Wind Speed Correction (DAVENPORT)

 $P_T(U_{HH}(z,t)) = \delta + \frac{\alpha - \delta}{\left(\varepsilon + e^{\left(-\beta.(U - v_0)\right)}\right)^{\frac{1}{\gamma}}} [kW]$ Turbine Output Power

(6 parameters logistic function fit)

Offshore Substation

$$P_{substation}(t) = \eta \left(\frac{P_{owf}(t)}{P_{substation}^{rated}} \right) \cdot P_{owf}(t) [kW]$$

Substation Output Power

 $capex(distance, P_{rated}) [\in]$

 $opex(distance, capex, P_{rated}) [\notin/y]$

 $P_{owf}(U_{HH}(z,t)) = Nb_T \cdot P_T(U_{HH}(z,t)) [kW]$ Wind farm Output Power

 $capex(distance, P_{rated})$ [€]

 $opex(distance, capex, P_{rated}) [\notin /y]$

Available models :

- LEANWIND 8MW reference offshore turbine
- MHI VESTAS 4.2MW offshore turbine
- NORDEX N90 2.5MW onshore turbine
- ENERCON E53 800kW onshore turbine

COMPONENTS MODELS – OVERVIEW – ELECTROLYZER

- Total electrolysis power *P*^{rated}
- Number of electrolyzers
- Electrolyzer technology
- $capex(distance, P_{we}^{rated})$ [\in]
- $opex(distance, capex, P_{we}^{rated}) [\notin/y]$

Ageing (for efficiency degradation) is included and replacement costs are added to project OPEX

	AEC	PEMEC
Efficiency η	Cf. graph	Cf. graph
 Working range (% nominal load)	15-100	10-100
Life time (kh)	60	50
Efficiency degradation (%/y)	0.01	0.015

$$\begin{cases} P_{we}^{out}(t) = P_{we}^{in}(t) \cdot \eta \left(\frac{P_{we}^{in}(t)}{P_{we}^{rated}}\right), P_{we}^{min} \le P_{we}^{in}(t) \le P_{we}^{max} \\ \dot{m}_{H2}(t) = \frac{P_{we}^{out}(t)}{LHV_{H2}} \end{cases}$$

COMPONENTS MODELS – OVERVIEW – H₂ STORAGE / COMPRESSION

Storage is represented by:

Ceatech

- Capacity in tons,
- Cost (capex/opex) function of capacity,

2 types of storage implemented:

- Generic: energy required to store a kg of H₂ has to be provided: possibility to create any type of storage
- **Compressed**: required compression energy is derived from a compression energy curve, from a few bars to 700bars. Hence compressor rated power can be derived.

When storage capacity is fixed, the amount of vented hydrogen is recorded

COMPONENTS MODELS – OVERVIEW – BATTERY

Battery capacity is a design variable

Battery parameters	Value
C-rate	2
Charge efficiency - $oldsymbol{\eta}_{charge}(oldsymbol{load})$	0.9
Discharge efficiency - $\eta_{discharge}(load)$	0.95
Depth of discharge (% capacity)	0.8
Life expectancy (# of cycles)	3000
Efficiency loss over lifetime (%)	0.1

$$P_{max}^{discharge} = P_{max}^{charge} = C. capacity [kW]$$

Ceatech

COMPONENTS MODELS – OVERVIEW – OFFSHORE EXPORT CABLES

6 types of cables are defined within MHyWind, from 15MVA to 290MVA with the associated acquisition cost functions (€/m)

kV	Imax	MVA
12	1265	15.18
24	1265	30.36
36	1265	45.54
72.5	1265	91.712
145	1290	187.05
225	1290	290.02

Cables capacity and number can be chosen, otherwise, the best configuration adapted to the wind farm rated power will be used.

Grid connection

- Electricity can be sold or purchased on the EPEX SPOT market, depending on power distribution heuristic and plant architecture
- Fees related to the use of the national electricity transport network (RTE in France) are computed as well (TURPE)

COMPONENTS MODELS – OVERVIEW – POWER DISTRIBUTION

Power distribution heuristic

Conditions	Distribution
$P_{owf} + P_{batt} < P_{we}^{min}$	P_{owf} is redirected sequentialy to the battery then to the grid, if applicable
$P_{we}^{min} \leq P_{owf} + P_{batt} \leq P_{we}^{max}$	All power available is used to feed the electrolysis system (wind + battery)
$P_{we}^{max} < P_{owf}$	Excess power is redirected to the battery, then to the grid, if available

CASE STUDIES

CS1: Not Connected - Offshore Wind Farm – Offshore Electrolysis

CS2: Connected - Offshore Wind Farm – Offshore Electrolysis

CS3: Connected - Offshore Wind Farm – Onshore Electrolysis

Optimization objective: minimizing LCoH₂ Provided with 2011 offshore wind speeds timeseries

Plants architecture & design variables

Case study ID	CS1	CS2	CS3
Hydrogen Production	Offshore	Offshore	Onshore
Grid connection / Export Cable	No	Yes	Yes
Number of turbines	50-100	50-100	50-100
P _{we} (MW)	[0.1-1].P _{owf}	[0.1-1].P _{owf}	[0.1-1].P _{owf}
Battery Capacity (MWh)	10-200	10-200	10-200
# Electrolyzers	1-5	1-5	1-5
Export Cable Capacity (MVA)	-	[0.1-1].P _{owf}	P _{owf}
Electrolyzers installation costs ratio	1	1	1/3

Common parameters

Project Life (y) / Interest Rate (%)	15 / 7
Hydrogen Storage Pressure	350bar
Turbine power (MW)	4.2
Turbine capex - €/kW	2880
Compressor efficiency	0.7
Export cable efficiency	0.96
Substation capex - €/kW	155
Substation installation costs - €/kW	41
Electrolyzer installation costs - €/kW	41

CASE STUDIES – OPTIMIZATION RESULTS

CS1: Not Connected - Offshore Wind Farm - Offshore Electrolysis

CS2: Connected - Offshore Wind Farm – Offshore Electrolysis

CS3: Connected - Offshore Wind Farm – Onshore Electrolysis

	CS1	CS2	CS3
Wind Farm Power (MW)	420	420	420
WE technology	AEC	AEC	AEC
Electrolyser Power (MW)	374	370	361
Number of electrolyser	1	1	1
Power Ratio (WE/OWF)	0.89	0.88	0.86
WE Capacity Factor	0.479	0.483	0.487
Battery Capacity (MWh)	71	65	61
Battery Power (MW)	142	130	122
Export Cable Capacity (MVA)	-	1x91.7MVA	2x290MVA
Energy transmitted to grid	-	0.3%	0.9%
LCoH2 (€/kg)	6.88	7.067	7.394
H2 Production (tons)	458372	4563332	445929
Energy Loss (% OWF output)	0.02%	0%	0%

• OWF power reaches upper boundary in optimization (not constrained by demand or storage, tries to increase H₂ volume)

- Hydrogen production located offshore over-performs, but transportation costs are not included
- Alkaline technology (lower CAPEX, better efficiency) over-performs over PEM technology
- CS3 under-performs, it suffers from transmission costs and losses, however, H₂ available onshore
- Only one electrolyzer: battery has a cost advantage in absorbing excess energy

CS1 with transportation (vessel capacity: 20t, daily rate: 14k€, fuel cost: 0,6€/L): 7.45€/kg

Results are only orders of magnitudes used to compare different architectures, depending on the hypothesis taken for this study.

CASE STUDIES – SENSITIVITY ANALYSIS – OWF 420MW

Battery presence offers better performances (volume, price), until optimal capacity is reached. After this point, maximum energy that can be absorbed by the system is reached: an increase in battery capacity is not necessary and increases LCOH₂

Ceatech

For the non connected case, LCoH₂ is more sensitive to energy losses, whereas connected case can sell excess energy to the grid, limiting LCoH₂ variation.

At optimal sizing in offshore production cases (CS1, CS2), CS1 is better than CS2: balance cost/gain of export cable presence and excess energy sale is not favorable.

Onshore production suffers from transmission losses

- CS1: Not Connected Offshore Wind Farm Offshore Electrolysis
- CS2: Connected Offshore Wind Farm Offshore Electrolysis
- CS3: Connected Offshore Wind Farm Onshore Electrolysis

- Optimized power distribution (perfect knowledge of wind speeds and electricity costs at given horizons (hours/days)): battery usage, electrolysis load, hydrogen production volume, electricity purchase costs and electricity sale revenues that finds the best trade-offs in power use
- Include electrolyzers **startup** times
- Optimal electrolyzer use and control
- Turbine generator downsizing: influences costs: turbines, substation and transmission

QUESTIONS ?

THANK YOU

Commissariat à l'énergie atomique et aux énergies alternatives 17 rue des Martyrs | 38054 Grenoble Cedex www.cea-tech.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019