

Optimising the utilisation of subsea cables in offshore wind farm collector networks Considering energy storage and GW scale wind farms

Peter Taylor¹

Olimpo Anaya-Lara¹, David Campos Gaona¹, Hong Yue¹

Chunjiang Jia², Chong Ng²

¹ – University of Strathclyde, ² – Offshore Renewable Energy Catapult

Contents

- Wind farm design optimisation
 - How and why?
- Energy storage system (ESS) hypothesis
- Case study at Lillgrund offshore wind farm
- Scaling up to GW wind farms

Wind farm optimisation

- Design factors to optimise
 - Turbine placement
 - Cable layout
- Aims
 - Increased energy capture
 - Lower investment costs
 - Reduced electrical losses
 - Reduced LCOE

ESS hypothesis

University of Strathclyde Glasgow

- Cable rating must be high enough to deliver rated power
- Energy storage can charge at times of peak power and discharge at times of low power
- Peak power in the cable is reduced

Case Study

- 48 turbines
- 2.3MW rated power
- 3 cable sizes used
 - 95mm², 185mm², 240mm²

Lillgrund Offshore Wind Farm

Turbine placement pre-processing

- Wind farm area discretised into nodes of possible turbine positions
- Jensen model used to assess each pair-wise interaction of nodes

Turbine placement algorithm

- Binary description for if a turbine is built/not built at each node (1/0)
- k-opt heuristic finds the most profitable k nodes to 'flip' (0s→1s and 1s→0s)
- Systematically 'flips' the best k nodes and updates wake effect matrix

University of

6

Turbine placement

7

&

Marine

Cable layout

- Many possible connections
- Binary variable for cable present or not
 - Variable for each cable size
- Continuous variable for power in cable
 - Cable capacity constraint

Cable layout

Cable unit costs

Cable unit costs and elec. losses value over lifetime

• R reduces with larger cables

University of

Strathclyde Glasgow

- Losses $\propto I^2 R$
- Cables limited by current carrying capacity

Electrical losses more significant than cable unit costs

Vastly changes which cables are best to select

Cable layout

10

University of	*
Strathcl	vde
Glasgow	

	Lillgrund
Cable cost (£M)	11.87
Electrical losses (£M)	51.26
Total cost (£M)	63.13

Lillgrund – ESS application

Offshore Renewable Energy

Limitations & improvements

- Loss of the grid structure of the layout
 - Navigation and search and rescue issues
- Computationally complex at large scale
 - Pre-processing wake effects for all node pairs
 - Constraint eq.s for MILP formulation of cable layout problem
- Not suitable for realistic larger scale WFs

Scaling up to GWs

Scaling up – turbine placement

- Particle swarm optimisation algorithm
- 8 variables
 - No longer a func of no. turbines
- Larsen wake model
- Much quicker run time

<u>Variables</u>

m ₁	Angle of rows
dm1	Angle between rows
s ₁	Spacing of rows
m ₂	Angle of cols
dm ₂	Angle between cols
S ₂	Spacing of cols
x	Horizontal disp.
У	Vertical disp.

Scaling up – cable layout

University of Strathclyde Glasgow

- Ant colony optimisation algorithm
 - 'Tidy-up' messy random routes
 - With multiple-travelling-salesman-problem approach for cable routing
- Able to deal with more complex problems
 - Computationally efficient

Conclusions

- Clear benefits in considering WF optimisation in design phase
 - Savings can be made if aiming at lifetime cost reduction
- Energy storage systems are not profitable/practical for cable loss reduction and cable de-rating
- Scaling up to GW scale can lead to a huge increase in computational complexity
- Practical design tools are needed to cope with these problems

Thank you

This research is conducted under the **Electrical Infrastructure Research Hub** (EIRH). The EIRH is a 5-year collaboration between ORE Catapult and the Universities of Strathclyde and Manchester.

Sources and references

Position data: Vattenfall – Assessment of the Lillgrund Windfarm

Windfarm information: *Vattenfall – Technical description Lillgrund wind power plant*

Wind data: BMWi and PTJ – FINO1 project & Vattenfall – Meteorological conditions at Lillgrund

