Design optimization of spar floating wind turbines considering different control strategies

John Marius Hegseth, Erin E. Bachynski
Department of Marine Technology, NTNU

Joaquim R. R. A. Martins
Department of Aerospace Engineering, University of Michigan

DeepWind 2020
Trondheim, 17 January 2020
Motivation

• Controller design is challenging for FWTs

• Several control strategies suggested
 – Trade-offs between structural loads, rotor speed tracking, and blade-pitch actuator use
 – Non-trivial to find optimal control parameters

• Interactions between controller and structure
 – Should be designed together for fair comparison between solutions

• Simultaneous design optimization with realistic design limits
Linearized FWT model

• Linearized model
 – aero-hydro-servo-elastic
 – frequency-domain
 – stochastic wind/wave input

\[x = x_0 + \Delta x, \quad u = u_0 + \Delta u \]

\[\Delta x = A\Delta x + B\Delta u \]

• External loads
 – wave excitation
 – thrust
 – tilting moment
 – torque

• Control inputs
 – generator torque
 – collective blade pitch angle
Linearized FWT model

- Four structural DOFs
- Rigid blades
- Internal forces from dynamic equilibrium
- Valid for spar platforms (circular cross section) with catenary mooring

\[\mathbf{x}_s = \begin{bmatrix} \xi_1 \\ \xi_5 \\ \xi_7 \\ \dot{\xi}_1 \\ \dot{\xi}_5 \\ \dot{\xi}_7 \\ \dot{\varphi} \end{bmatrix} \]
Blade-pitch control strategies

- CS1: PI
- CS2: PI + platform pitch velocity feedback
- CS3: PI + nacelle velocity feedback
- CS4: PI + nacelle velocity feedback + WF low-pass filter

- Modified rotor speed reference in CS2-4:

\[
\dot{\varphi}_0' = \dot{\varphi}_0(1 + k_f\dot{x}_f)
\]
Optimization problem

• Objective
 – Minimize cost of platform + tower
 – Material and manufacturing

• Design variables, structure
 – Tower/hull dimensions
 – Hull scantling design not considered
Optimization problem

- Objective
 - Minimize cost of platform + tower
 - Material and manufacturing

- Design variables, structure
 - Tower/hull dimensions
 - Hull scantling design not considered

- Design variables, control
 - PI gains \((k_p\text{ and } k_i)\)
 - Velocity feedback gain \((k_f)\)
 - Low-pass filter corner frequency \((\omega_f)\)

<table>
<thead>
<tr>
<th>Design variable</th>
<th>(k_p)</th>
<th>(k_i)</th>
<th>(k_f)</th>
<th>(\omega_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS2</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>CS3</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>CS4</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

- 47 design variables in total
Environmental conditions

• Long-term fatigue
 – 15 ECs
 – 1-30 m/s with 2 m/s step
 – Most probable H_s and T_p

• Short-term extreme response
 – 3 ECs
 – 50-year contour

<table>
<thead>
<tr>
<th>Condition</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean wind speed [m/s]</td>
<td>13.0</td>
<td>21.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Significant wave height [m]</td>
<td>8.1</td>
<td>9.9</td>
<td>15.1</td>
</tr>
<tr>
<td>Spectral peak period [s]</td>
<td>14.0</td>
<td>15.0</td>
<td>16.0</td>
</tr>
</tbody>
</table>
Optimization problem

• Constraints, structure
 – Fatigue damage and buckling in tower
 – Maximum platform pitch angle, < 15°
 – Heave natural period, > 25 s
 – Most probable 1-h maximum value used as extreme response

• Constraints, control
 – Rotor speed variation (std.dev.), blade pitch actuator use (ADC)
 – Constraint values based on land-based DTU 10 MW
 – Weighted average of short-term values

\[
ADC_i = \frac{1}{T} \int_0^T \frac{|\dot{\theta}_i(t)|}{\dot{\theta}_{max}} \, dt,
\]

\[
ADC = \sum_{i=1}^{N_{EC}} p_i ADC_i
\]

• Gradient-based optimization
 – OpenMDAO framework
 – Analytic derivatives
Design solutions

- **Below wave zone**
 - Heighten CoB, lower CoG
 - Increases pitch restoring stiffness

- **Intersection platform/tower**
 - Balance between wave loads and fatigue resistance
Structural response

- Controller primarily affects resonant pitch response
 - More aerodynamic damping
 - Tower base bending moment spectrum, 15 m/s mean wind speed

- Most critical extreme response found above cut-out
 - No impact from controller
Cost and performance comparison

- Cost reduction mainly in tower due to lower fatigue loads
 - Some reduction in platform costs, coupling with tower

- CS1 unable to fully utilize available actuator capacity

- CS4 does not offer much additional reduction in cost, but
 - Less rotor speed variation
 - Larger improvements likely for designs with more WF response

- Cost comparison strongly dependent on chosen constraint values
Verification

• Comparison with nonlinear time domain simulations

• Mostly, trends are captured with reasonable accuracy

• Fatigue damage for CS1 significantly overpredicted
 – Optimal design has small aerodynamic damping in pitch
 – Does not occur with velocity feedback control

• Rotor speed variation quite consistently underestimated
 – Can be considered by lowering constraint value
Conclusions

• Integrated optimization of a spar FWT
 – Evaluation of trade-off effects in a lifetime perspective

• Linearized model captures trends, but
 – Overestimates pitch response if aerodynamic damping is low

• Controller mainly affects resonant pitch response
 – Cost reductions in tower due to lower fatigue loads
 – Actual values depend on rotor speed variation and ADC constraints
 – Alternative to use multi-objective approach

• No effect from controller on extreme response
 – Limited coupling effects
 – Small variations for the platform design
Limitations/future work

• Transient and nonlinear events
 – Extreme rotor speed excursions

• Consider impact of controller on
 – Blades
 – Drivetrain
 – Mooring system

• Additional modifications
 – Torque controller
 – IPC
Thank you for your attention!

John Marius Hegseth
john.m.hegseth@ntnu.no