

AGENDA

- Introduction & Motivation
- LCOE modelling and simulation
 - > IDL tower case study: Comparing LCOE steel vs composite tower case
- > Life cycle assessment
 - > IDL tower case study: Comparing environment impact between steel vs composite tower case
- > Conclusions and recommendations

TOWARDS LARGE-SCALE GENERATION OF WIND ENERGY

for life

IDL TOWER BACKGROUND

- > Continuation of C-Tower: >40% lighter tower concept based on GFRP
- The aim is to evaluate the technical, economic and environmental effects of a lighter, more flexible composite tower, with substantial lower eigen frequencies than a conventional steel tower.
- > Alternative for steel tower
 - > Energy intensive steel fabrication
 - > Less weight in transportation
 - Less maintenance against corrosion and other environmental effects

IDL TOWER SCOPES & WORKS

Developing production methods

Prototyping and laboratory testing

LCoE including effects of installation and O&M

LCA / end-of-life

/alorisation, patenting and certification

IDL TOWER DESIGN

- Avatar 10 MW x 77 WT = 770 MW (Borssele area)
- For the integrated tower design, an offshore load set according to IEC 61400-3:2009 was used.
- The composite tower, steel transition piece and steel monopile were optimized using the FOCUS6 software and verified for ultimate, buckling and fatigue strength and eigenfrequency constraints
 - Layup composite tower (GFRP polyester)

	Steel	IDL	Red
Material price (€/kg)	1.80	4.63	
Tower mass (mT)	790.3	320.5	-59.4%
MP Mass (mT)	1186.0	788.6	-33.5%
TP Mass (mT)	251.0	162.2	-35.4%

ECN COST MODEL

- > The cost model is developed with the idea to provide an economic evaluation of an offshore wind farm:
- Currently is tuned for "traditional" OWF, but flexible enough to be expanded with new technologies/knowledge
 - Wind turbine with a single (3 bladed) rotor
 - Monopile support structure
 - > Rectangular or square shape farm
 - Installation and O&M with SOVs and/or CTVs that are used in today's market
 - Typical electrical infrastructure
- > Next development are: floating support structure, multi-rotor/airborne technology, etc.

$$LCoE = \frac{\left(\frac{CapEx}{a} + OpEx\right)}{AEP}$$

ECN COST MODEL

STEEL VS. IDL TOWER CASES

Installation

- Deck space: 3600m2
- Crane: 1000 mT
- Cargo 6000 mT
- Cases:
 - Steel: 3 WTs or 3 foundations per trips
 - IDL: 4 WTs or 4 foundations per trips

- Deck space: 4600m2
- Crane: 1500 mT
- Cargo 8000 mT
- Cases:
 - IDL: 6 WTs or 6 foundations per trips

B: 160%

- Deck space: 3200m2
- Crane: 600 mT
- Cargo 4000 mT
- Cases:
 - IDL: 12 towers/trip
 - Add vessel type A to carry 5 nacelles, hubs and blades

STEEL VS. IDL TOWER CASES O&M

- Changes only in UMD Turbine Structure / Tower failure rates
 - Reduction in short inspection and repair (bolts and welding)
- > Same maintenance response as default
 - > Short inspection and small repair
 - > 4 hours
 - > Using consumables
 - > 3 technicians

RESULTS

- Tower & foundation costs: 80M€
- > O&M costs: ~0.5 M€/year

- Using vessel A (Carry 4 sets of WTs/trip and 4 sets of foundations/trip) is the cheapest
- > Reduction of 3.1M€ or 2% of installation costs

SUMMARY

LIFE CYCLE ASSESSMENT

- LCA is a methodology used to evaluate the > environmental impacts associated with a product or service throughout their life cycle, by
 - Compiling the environmental inputs and outputs
 - Evaluating their potential environment impacts
 - Considering their life cycle

IDL Tower: LCOE Calculation and LCA

innovation for life

IDL VS STEEL CASE LCA

- > Scope
 - > Components:
 - Foundations: monopile + TP
 - > Tower: steel vs composite
 - Process (see pictures)
- > Functional unit: 1 piece of each component
- Methodology
 - ReCiPe 2016 Mid point / End point (E)
 - > Energy cumulative demand
- > Tool: SimaPro

 Material extraction

 End-of-life options
 Manufacturing

 Decommissioning & Disassembly
 Transport & Installation

 Operation - & Maintenance
 Maintenance

MATERIAL & MANUFACTURING

Foundations (monopile + TP)

Figure: © COWI A/S.

Steel case	IDL Case
 99% steel (in 1% aluminiun coating, copp 	cl. rolling & welding) n, alkyl resin, powder ver, lead
TP: 251 mT MP: 1186 mT	TP: 162.2 mT MP: 788.6 mT

- > 33.8% reduction in weight (foundations)
- Add: heat, tap water, electricity mix based in NL

> Tower

Steel case	IDL Case
 98.2% steel (incl. rolling, welding) Rest: copper, steel coating, alkyl resin, etc. 	 62% glass fibres 37% polyester resin Organic chemical for curing agent and coating Emission: 0.25%-w styrene
790.3 mT	320.5 mT

LCA RESULTS: MATERIAL COMPARISON

Carbon footprint

(kg CO2-equivalents)

Foundation (ct) Foundation (st)

4,00E+06

3,00E+06

2,00E+06

1.00E+06

0,00E+00

innovation for life

- Embodied energy difference is marginal (tower)
- Almost all impact categories, IDL tower < steel towers
 - Except 2/18 (stratospheric ozone depletion and land use)

LCA RESULTS: TRANSPORT RELATED

> IDL tower case has less impact than the steel tower as it's less weight to carry (all proportional)

innovation for life

Installation & Decommissioning contribution is very small compared to overall life cycle (<5%)

LCA RESULTS: END OF LIFE

- > Steel is relatively easy to recycle \rightarrow potential environment benefit or credit in the future
- > For foundations, steel case gives higher benefit
- For towers
 - Steel tower gives high benefits as MP + TP
 - > Composite tower is not recycled hence
 - > Additional impacts at the end-of-life

OVERALL LCA COMPARISON

CONCLUSIONS

- > IDL Tower: reductions of 59.4% and 33.8% mass reduction in tower and foundation
- > Costs and environment impacts/benefits can be evaluated,
 - > ECN Cost model is used to get insight in LCOE or costs breakdown
 - > LCA is used to evaluate technology beyond their economic values
- > IDL tower case led to ~3.9% LCOE reduction, mostly come from weight reduction but also installation
- IDL tower case led to lower environment impacts in total, even though at EoL composite tower shows higher impacts,
 - > Steel is highly and easily recycled hence at the EoL there is potential environment credit
 - > Potential benefit (not included) if composite is recycled

RECOMMENDATION & NEXT STEPS

- > Further validation in the manufacturing, usage related to the O&M, and certification.
- Further roll out: real life demonstration to monitor the performance, degradation, load and vibration measurements
- > Sensitivity (LCOE and LCA) when using IDL tower with current and future turbine sizes
- > CAPEX of IDL tower will be influenced by economies of scale and production capacity
- Development of composite recycling within the wind industry
- > When viable recycling processes are included, it is expected that the composite case will have potential environmental benefit as in steel tower case.

THANK YOU FOR YOUR ATTENTION

10080978

-11

innovatio

Take a look: TNO.NL/TNO-INSIGHTS