

Wave-induced loads between a spar-buoy floating wind turbine and installation vessel

David Lande-Sudall, Thomas Høyven, Kjell Herfjord, Thore Thuestad Western Norway University of Applied Sciences DeepWind '20

Background – Hywind Scotland installation Aims and objectives Test plan and model Vessel response Overturning moments **Collision** loads Conclusions & future work

All pictures - Equinor ASA

Installation limitations

[1]

Availability/cost of heavy-lift equipment Accessibility to deep water ports Weather windows

VIM

[5]

Experimentally investigate overturning moments and possible collision loads between a vessel and turbine (FWT) in order to evaluate feasibility of the installation method.

Simplified model

Full and reduced draft

Overturning moments in operational irregular seas, Hs=1.5-3m, Tp=6.5-16.5 s

Collision loads in regular head seas: H=1.5-2.9 m, T=6.5-16.5 s

H. m		T _p , s																		
	0-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	Sum
0-1	0.114	2.418	6.729	5.854	4.875	3.218	1.926	1.313	0.737	0.404	0.199	0.108	0.041	0.025	0.008	0.002	0.003			27.974
1-2		0.037	3.409	9.017	8.295	6.478	4.941	3.276	2.402	1.599	0.810	0.369	0.158	0.070	0.023	0.006	0.002			40.891
2-3			0.040	0.912	4.574	4.792	3.116	2.155	1.282	0.902	0.731	0.376	0.147	0.081	0.020	0.008	0.005			19.140
3-4				0.003	0.387	1.671	2.298	1.552	0.860	0.357	0.250	0.132	0.091	0.041	0.013	0.003	0.001	0.001	0.001	7.660
4-5					0.010	0.108	0.675	0.903	0.641	0.287	0.098	0.061	0.032	0.014	0.009	0.003				2.841
5-6						0.003	0.073	0.277	0.321	0.231	0.074	0.037	0.008	0.006	0.003					1.033
6-7							0.002	0.036	0.085	0.107	0.066	0.028	0.008	0.002	0.001					0.336
7-8								0.001	0.012	0.027	0.037	0.010	0.006	0.003	0.003					0.099
8-9									0.001	0.004	0.009	0.005	0.005	0.001	0.001					0.025
10-11												0.001	0.001							0.002
11-12											0.001									0.001
Sum	0.114	2.455	10.179	15.786	18.141	16.271	13.030	9.512	6.340	3.918	2.275	1.125	0.498	0.243	0.081	0.021	0.010	0.001	0.001	100.000

50m x 3m x 2.2m EDesigns 6 flap-type wavemaker H_{max}=0.5 m, T=0.5-3 s Carriage – U=5m/s, Ù=1.2m/s²

Western Norway

University of Applied Sciences

MarinLab towing tank

1/72 scale

Barge allows 18% draught reduction of FWT Qualysis motion capture (150 Hz) Load cells (2000 Hz) Wave gauges (1x2000 Hz, 6x128 Hz)

Pitch eigenperiod, $f_0 = 14.4 \text{ s}$ (*)

Overturning moments

Collision loads

Hs=1.5 m, Tp=14 s

Hs=1.5 m, T=16 s

• Wave spectra

• Vessel RAO (/m)

 Wave gauge 10 m in front of model (—) compared to JONSWAP (—)

- Reduced draft (---) has slightly greater pitch response than full draft (---)
- Reasonable agreement to HydroD full-draft model
 (---)

• Loads are normally distributed

Western Norway

University of Applied Sciences

- Peak load aligns with pitch eigenfrequency of combined vessel-FWT
- Doubling Hs, doubles load
- 18% reduction in draft gives 10-20% reduction in loads

Max. wave overturning moment: <u>1.49 GNm</u> Wind-induced moment: U=8m/s, α=0.14, NTM (I=7.7%) <u>4.24 GNm</u>

Truss modelled as equivalent Euler-Bernoulli beam Required footprint area=7m²

• Electromagnet release time relative to wave phase made no difference.

Collisions – full draught

• Collisions were repeatable.

Western Norway

University of Applied Sciences

- Collisions beyond surge period ignored
- Impulse calculated for each collision

Standard: $F_{DNV} = 2.5\Delta = 32.5 \text{ MN}$

- Peak impulse is at f₀
- Large spread of loads cannot confirm normal distribution

 Doubling Δt, halves impulse and therefore F within DNV standard

- Loads from waves and wind can be accommodated
- Vessel with lower eigenfrequency improves operational range of Tp (Hs<2.9 m necessary).
- Use of spring-damper to reduce impulse
- Assess loads on nacelle
- Comparison to collision models
- Test new vessel in wider range of wave headings

Thank you to Equinor ASA for support in building the model

References:

[1] Huisman Equipment BV, "Wind Turbine Shuttle," Huisman Equipment BV, 2015.

[2] Windflip. Tekniske Ukeblad article: https://www.tu.no/artikler/satser-karrieren-pa-windflip/240947

[3] Jiang, Z., et al. (2017) Dynamic response analysis of a catamaran installation vessel during the positioning of a wind turbine assembly onto a spar foundation. In: Marine Structures 61

[4] MODEC Inc. D-Spar & Fork-on/Float-off installation methods. Available: http://www.modec.com/fps/offshorewind/d-spar/index.html

[5] Ulstein Group ASA. Windlifter. Available: https://ulstein.com/equipment/ulstein-windlifter

[6] Atkins. Hywind floating wind Installation Challange. Available: http://www.atkinsglobal.com/en-GB/projects/hywind-installation-challenge