

Installation and substructure

Nonlinear hydroelastic response of a monopile wind turbine foundation in regular waves

<u>Vincent Leroy</u>, Erin Bachynski, Jean-Christophe Gilloteaux, Aurélien Babarit, Pierre Ferrant

16/01/2020 – EERA DeepWind'2020 – Trondheim

Context

Hydroelasticity of bottom-fixed wind turbines foundations

> Morison, potential flow theory (FNV, ...) for cylinders, simple geometries

Floating wind turbines

> Most of the numerical models are rigid-flexible: rigid hull + elastic tower, blades and drivetrain, ignoring the elasticity of the platform

In design phases, current models assume a rigid hull to compute internal loads Hydrodynamic loads are computed with

- Linear potential flow theory possibly multi-body
- Morison equation and linear or 2nd order wave kinematics

Structure internal loads and deformations

Nonlinear hydroelastic response of monopile wind turbine foundation

Floatgen FWT ©Centrale Nantes/Above All

Project HeloFOW

Hydroelasticity of large FWT platforms Financed by WEAMEC Centrale Nantes LHEEA (France) / NTNU IMT (Norway)

Numerical

- > How to account for elasticity in hydrodynamic calculations? (coupling)
- → Develop a coupling between non-linear potential flow solver and a FEM "beam" model

Experimental

> Experimental testing of flexible/segmented platform models

First step: implementation and verification on a monopile foundation

16/01/2020

WSCN solver

Weak-scatterer theory

Solver developed in Centrale Nantes since 2011

Assumptions

- > Potential flow $\rightarrow \Delta \phi = 0$ in the fluid
- > Weakly non linear

Weak-Scatterer hypotheses:
$$\begin{cases} \phi = \phi^{I} + \phi^{P} \\ \eta = \eta^{I} + \eta^{P} \end{cases}, \text{ with } \begin{cases} \phi^{P} = o(\phi^{I}) \\ \eta^{P} = o(\eta^{I}) \end{cases} \text{ and } \begin{cases} \phi^{P} \xrightarrow{r \to \infty} 0 \\ \eta^{P} \xrightarrow{r \to \infty} 0 \end{cases}$$

- > Free surface boundary conditions are written at incident wave elevation $\eta^{I}(x, y, t)$
- > Loads

$$F_{hydro} = -\iint p \, \boldsymbol{n} dS \qquad \text{where} \qquad p = -\rho \left(\frac{\partial \phi^{\mathrm{I}}}{\partial t} + \frac{\partial \phi^{\mathrm{P}}}{\partial t} + \frac{1}{2} \nabla \phi^{\mathrm{I}} \cdot \nabla \phi^{\mathrm{I}} + \nabla \phi^{\mathrm{P}} \cdot \nabla \phi^{\mathrm{I}} + gz \right)$$

> Advantages: allows large motions and fully non-linear wave fields

16/01/2020

Δ

n

WSCN solver In a few lines, for a fixed or floating body

> 1st Boundary Value Problem : 2nd Green identity for velocity potential and its gradient $\phi^P(M)$ and $\frac{\partial \phi^P}{\partial n}(M)$

Fluid-structure coupling: node acceleration

16/01/2020

Structural solver: FEM analysis

Python FEM solver for beams: "beampy"

- > Based on Euler-Bernoulli theory
- > Verified with comparison to other models
- > Dynamics solved with modal superposition

16/01/2020

Fluid-structure coupling

- > Hydrodynamic force: $\mathbf{F}^{WSC} = -\iint p\mathbf{n}dS = \mathbf{F}_0^{WSC} + \iint \rho \frac{\partial \phi^P}{\partial t} \mathbf{n}dS = \mathbf{F}_0^{WSC} + \mathbf{L}\dot{\phi}$
 - L represents the projection of the hydrodynamic mesh on the structure mesh $(N_s \times N_h)$
- > Equation of motion:

BVP2:

Boundary condition (body):

$$\begin{cases} \mathbf{M}\ddot{\boldsymbol{u}} - \mathbf{L}\dot{\boldsymbol{\phi}} = -\mathbf{C}\dot{\boldsymbol{u}} - \mathbf{K}\boldsymbol{u} + \mathbf{F}_{0}^{\mathrm{WSC}} + \mathbf{F}^{ext} \\ \mathbf{G}\dot{\boldsymbol{\phi}} = \mathbf{H}\dot{\boldsymbol{\phi}}_{n} \\ \dot{\boldsymbol{\phi}}_{n} - \mathbf{D}\ddot{\boldsymbol{u}} = -\dot{\boldsymbol{\phi}}_{n}^{I} + \boldsymbol{B} + \boldsymbol{Q} \end{cases}$$

Beam element i

Solved at the same time in a RK4 integration scheme.

> With modal superposition:
$$\psi^T \mathbf{M} \psi \ddot{y} - \psi^T \mathbf{L} \dot{\phi} = -\psi^T \mathbf{C} \psi \dot{y} - \psi^T \mathbf{K} \psi y + \psi^T \left(\mathbf{F_0}^{WSC} + \mathbf{F}^{ext} \right)$$

16/01/2020

Verification on a bottom-fixed wind turbine

Monopile foundation

- > Geometry: uniform beam, embedded at the mudline
 - Length $L_0 = 100 m$
 - Diameter D = 6 m
 - Thickness $\epsilon = 7.5 \ cm$
 - Water depth d = 30 m
 - 50 beam elements, 2100 nodes in hydrodynamic mesh

> Aims:

- Verify the accuracy of the coupling in linear waves
- Observe non-linear and coupling effects in steep waves

16/01/2020

Verification on a bottom-fixed wind turbine

Reference and load cases

- > Reference models
 - 1. Sima (SINTEF): Morison equation + Stokes 2nd order wave + direct FEM No viscous forces ($C_d = 0$), C_m chosen from MacCamy-Fuchs
 - 2. "Semi-analytic": analytic modes + Morison with Airy waves
- > Set of 10 regular waves (Airy, Rienecker-Fenton)
 - Waves periods from 3 to 8s, amplitudes from 0.1 to 6 m, with 1.3 to 39% steepness (*kA*)
- > Compare
 - Hydrodynamic forces
 - Mudline bending moment
 - Tower mid-height and top displacement

16/01/2020

Regular waves (1)

- > Rienecker-Fenton (WSCN) / Stokes 2nd order (Sima)
- > Mudline bending moment

16/01/2020

Nonlinear hydroelastic response of monopile wind turbine foundation

LHEEA CENTRALE

CNTS

BREAKING CRITERION (SOLITARY WAVE)

CNOIDA

WATER WAVE

0.01

0.001 H gT²

0.000

DEEP-WATER BREAKING CRITERION

INTERMEDIATE DEPTH WAVES

H = 0.142

LINEAR WAVE TH

DEEP WAT

Regular waves (2)

- > Rienecker-Fenton (WSCN) / Stokes 2nd order (Sima)
- > Mudline bending moment

16/01/2020

Nonlinear hydroelastic response of monopile wind turbine foundation

LHEEA CENTRALE

CINIS

BREAKING CRITERION (SOLITARY WAVE)

CNOID/

WATER WAVE

0.01

0.001

0.000

DEEP-WATER BREAKING CRITERION

INTERMEDIATE DEPTH WAVES

H = 0.142

LINEAR WAVE TH

DEEP WAT

Regular waves (1)

- > Rienecker-Fenton (WSCN) / Stokes 2nd order (Sima)
- > Mudline bending moment harmonics

16/01/2020

Nonlinear hydroelastic response of monopile wind turbine foundation

5

LHEEA CENTRALE

CINIS

BREAKING CRITERION (SOLITARY WAVE)

CNOID/

WATER WAVE

0.01

0.001 H gT²

0.000

DEEP-WATER BREAKING CRITERION

INTERMEDIATE DEPTH WAVES

H = 0.142

LINEAR WAVE TI

DEEP WAT

Regular waves (2)

- > Rienecker-Fenton (WSCN) / Stokes 2nd order (Sima)
- > Mudline bending moment harmonics

> DLCs: (T = 3 s, A = 0.353 m) and

$$(T = 5 s, A = 0.981 m)$$
 and

16/01/2020

Nonlinear hydroelastic response of monopile wind turbine foundation

LHEEA CENTRALE

CNIS

BREAKING CRITERION (SOLITARY WAVE)

CNOID/

WATER WAVE

0.01

0.001 H gT²

0.000

0.000

DEEP-WATER BREAKING CRITERION

INTERMEDIATE DEPTH WAVES

0.01

(Le Méhauté, 1976)

H = 0.142

LINEAR WAVE TH

(T = 8 s, A = 2.511 m)

d 0.1 aT² DEEP WAT

Conclusions, future works

> Implementation of a non-linear hydro-elastic coupling between WSCN and FEM

> Comparison with Morison + Stokes 2nd order waves, on the case of a monopile

- Good agreement on 1st order and 2nd order harmonics
- Differences in steep waves, particularly on high order harmonics

> Comparison with experimental data on a flexible monopile

- > Simulation of Floating Wind Turbines
- > Experimental studies at Centrale Nantes (next year)

References

T. Kristiansen and O. M. Faltinsen (2017), Higher harmonic wave loads on a vertical cylinder in finite water depth, *Journal of Fluid Mechanics* 833

L. Guignier, A. Courbois, R. Mariani and Choisnet, T. (2016), Multibody modelling of Floating Offshore Wind Turbine foundation for global loads analysis, *Proceedings of the 26th International Ocean and Polar Engineering Conference, Rhodes, Greece, June 26-July 1*

P.-Y. Wuillaume (2019), Simulation numérique des opérations d'installation pour les fermes d'éoliennes offshore, *PhD Thesis Centrale Nantes*

B. Le Méhauté (1976), An introduction to hydrodynamics and water waves, Springer Science and Business Media

M. M. Rienecker and J. D. Fenton (1981), A Fourier approximation method for steady water waves, *Journal of Fluid Mechanics 104*

R. C. MacCamy and R. A. Fuchs (1954), Wave forces on piles: A diffraction theory. No. TM-69., *Corps of engineers Washington DC beach erosion board*

16/01/2020

Thank you for your attention

16/01/2020