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Context

Hydroelasticity of bottom-fixed wind turbines foundations
> Morison, potential flow theory (FNV, …) for cylinders, simple geometries

Floating wind turbines
> Most of the numerical models are rigid-flexible: rigid hull + elastic tower,
blades and drivetrain, ignoring the elasticity of the platform

> In design phases, current models assume a rigid hull to compute internal loads

Hydrodynamic loads are computed with

• Linear potential flow theory – possibly multi-body

• Morison equation and linear or 2nd order wave kinematics

Floatgen FWT ©Centrale Nantes/Above All

Hydrodynamic loads
Structure internal loads and 

deformations
(Guignier et al., 2016))
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Project HeloFOW
Hydroelasticity of large FWT platforms

Financed by WEAMEC
Centrale Nantes LHEEA (France) / NTNU IMT (Norway)

Numerical
> How to account for elasticity in hydrodynamic calculations? (coupling)

 Develop a coupling between non-linear potential flow solver and a FEM “beam” model

Experimental
> Experimental testing of flexible/segmented platform models

First step: implementation and verification on a monopile foundation
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𝜂𝐼

(Wuillaume, 2019)

WSCN solver

Weak-scatterer theory
Solver developed in Centrale Nantes since 2011

Assumptions
> Potential flow Δ𝜙 = 0 in the fluid

> Weakly non linear

Weak-Scatterer hypotheses: ൝
𝜙 = 𝜙𝐼 + 𝜙𝑃

𝜂 = 𝜂𝐼 + 𝜂𝑃
,  with ൝

𝜙𝑃 = o 𝜙𝐼

𝜂𝑃 = o 𝜂𝐼
and ቐ

𝜙𝑃

𝑟→∞
0

𝜂𝑃
𝑟→∞

0

> Free surface boundary conditions are written at incident wave elevation 𝜂𝐼 𝑥, 𝑦, 𝑡

> Loads

𝐹ℎ𝑦𝑑𝑟𝑜 = 𝑝׭− 𝒏𝑑𝑆 where 𝑝 = −𝜌
𝜕𝜙I

𝜕𝑡
+

𝜕𝜙P

𝜕𝑡
+

1

2
𝛻𝜙I ⋅ 𝛻𝜙I + 𝛻𝜙P ⋅ 𝛻𝜙I + 𝑔𝑧

> Advantages: allows large motions and fully non-linear wave fields
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WSCN solver
In a few lines, for a fixed or floating body

> 1st Boundary Value Problem : 2nd Green identity for velocity potential and its gradient

𝜙𝑃 𝑀 and 
𝜕𝜙𝑃

𝜕𝑛
𝑀

> 2nd BVP (Green identity) linking:
𝜕𝜙𝑃

𝜕𝑡
𝑀 and 

𝜕2𝜙𝑃

𝜕𝑛𝜕𝑡
𝑀

> …using the boundary conditions on the body:
𝜕2𝜙𝑃

𝜕𝑛𝜕𝑡
𝑀 = ሷ𝒙 𝑀 ∙ 𝒏 + 𝑞

Gives the hydrodynamic loads

Fluid-structure coupling: node acceleration
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Structural solver: FEM analysis
Python FEM solver for beams: “beampy”

> Based on Euler-Bernoulli theory

> Verified with comparison to other models

> Dynamics solved with modal superposition
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Fluid-structure coupling

> Hydrodynamic force: 𝐅𝑊𝑆𝐶 = 𝑝𝒏𝑑𝑆׭− = 𝐅0
WSC 𝜌׭+

𝜕𝜙𝑃

𝜕𝑡
𝒏𝑑𝑆 = 𝐅0

WSC + L ሶ𝝓

• L represents the projection of the hydrodynamic mesh on the structure mesh (𝑁𝑠 × 𝑁ℎ)

> Equation of motion: M ሷ𝒖 − L ሶ𝝓 = −C ሶ𝒖 − K𝒖 + 𝐅0
WSC + 𝐅𝑒𝑥𝑡

BVP2: G ሶ𝝓 = H ሶ𝝓𝒏

Boundary condition (body): ሶ𝝓𝒏 − D ሷ𝒖 = − ሶ𝝓𝒏
𝑰 + 𝑩+ 𝑸

Solved at the same time in a RK4 integration scheme.

> With modal superposition:
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Verification on a bottom-fixed wind turbine

Monopile foundation

> Geometry: uniform beam, embedded at the mudline

• Length 𝐿0 = 100 𝑚

• Diameter 𝐷 = 6𝑚

• Thickness 𝜖 = 7.5 𝑐𝑚

• Water depth 𝑑 = 30 𝑚

• 50 beam elements, 2100 nodes in hydrodynamic mesh

> Aims:

• Verify the accuracy of the coupling in linear waves

• Observe non-linear and coupling effects in steep waves
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Verification on a bottom-fixed wind turbine

Reference and load cases
> Reference models

1. Sima (SINTEF): 
Morison equation + Stokes 2nd order wave + direct FEM
No viscous forces (𝐶𝑑 = 0), 𝐶𝑚 chosen from MacCamy-Fuchs

2. “Semi-analytic”: analytic modes + Morison with Airy waves

> Set of 10 regular waves (Airy, Rienecker-Fenton)

• Waves periods from 3 to 8s, amplitudes from 0.1 to 6 m, 
with 1.3 to 39% steepness (𝑘𝐴)

> Compare

• Hydrodynamic forces 

• Mudline bending moment

• Tower mid-height and top displacement
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Verification
Regular waves (1)
> Rienecker-Fenton (WSCN) / Stokes 2nd order (Sima)

> Mudline bending moment

> DLCs:
𝑇 = 3 𝑠, 𝐴 = 0.15 𝑚 and 𝑇 = 5 𝑠, 𝐴 = 0.5 𝑚 and 𝑇 = 8 𝑠, 𝐴 = 1.6 𝑚

Nonlinear hydroelastic response of monopile wind turbine foundation16/01/2020 10



Verification
Regular waves (2)
> Rienecker-Fenton (WSCN) / Stokes 2nd order (Sima)

> Mudline bending moment

> DLCs:
𝑇 = 3 𝑠, 𝐴 = 0.353 𝑚 and 𝑇 = 5 𝑠, 𝐴 = 0.981 𝑚 and 𝑇 = 8 𝑠, 𝐴 = 2.511 𝑚
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Verification
Regular waves (1)
> Rienecker-Fenton (WSCN) / Stokes 2nd order (Sima)

> Mudline bending moment harmonics

> DLCs:
𝑇 = 3 𝑠, 𝐴 = 0.15 𝑚 and 𝑇 = 5 𝑠, 𝐴 = 0.5 𝑚 and 𝑇 = 8 𝑠, 𝐴 = 1.6 𝑚
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Verification
Regular waves (2)
> Rienecker-Fenton (WSCN) / Stokes 2nd order (Sima)

> Mudline bending moment harmonics

> DLCs:
𝑇 = 3 𝑠, 𝐴 = 0.353 𝑚 and 𝑇 = 5 𝑠, 𝐴 = 0.981 𝑚 and 𝑇 = 8 𝑠, 𝐴 = 2.511 𝑚

Nonlinear hydroelastic response of monopile wind turbine foundation16/01/2020 13



Conclusions, future works
> Implementation of a non-linear hydro-elastic coupling between WSCN and FEM

> Comparison with Morison + Stokes 2nd order waves, on the case of a monopile
• Good agreement on 1st order and 2nd order harmonics

• Differences in steep waves, particularly on high order harmonics

> Comparison with experimental data on a flexible monopile

> Simulation of Floating Wind Turbines

> Experimental studies at Centrale Nantes (next year)
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Thank you for your attention
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