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About SPOWTT MARIN|

improving Safety and Productivity of Offshore Wind Technician Transits

Sea State Ship Motions Motion Sickness,

=yt Productivity,

transfer vessel Safety
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Project goals MARIN|

° Primary goal: On-shore decision support tool
* Secondary goal:  On-board advice system




Examples CTV MARIN

Types:
Monohull

Catamaran
Swath




CATAMARANS POPULAR AMONG CTVs MARIN|
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Are seakeeping simulations useful for the planning of O&M?m

Objective: “Validation” of calculated vessel motion data against
full scale motion measurement data.

Ship motion simulation code Real measurement on CTVs
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How can seakeeping simulations be used for the planning of O&M?
ping P g m

CTV

* Operability of transit journeys is description

determined using a dB of motion SDAs m

SDA = Significant Double Amplitude
e SDA are calculated from motion RAOs

Wave
statistics

e RAOs are determined thanks to a ship
motion simulation code: PANSHIP

Ship

_ _ _ hydro
e PANSHIP implements a semi-non-linear trznsit

panel methods to predict hydrodynamic dB
loads on fast ships

Decision tool

e Accounting for lifting devices (foil/trim
flap) Weather

data

Go/Wait
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How can seakeeping simulations be used for the planning of O&M?
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e Operability of transit journeys is description

determined using a dB of motion SDAs m

SDA = Significant Double Amplitude

e SDA are calculated from motion RAOs

Wave
statistics

e RAOs are determined thanks to a ship
motion simulation code: PANSHIP

Ship

. . . hydro
*  PANSHIP implements a semi-non-linear tr:nsit

panel methods to predict dB
hydrodynamic loads on fast ships

*  Accounting for lifting devices (foil/trim
flap) Weather
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CTV

* Validation framework allowing for comparison at:

description

A)  Frequency level

Most direct approaches MARIN
Spectral correlation of
vessel motions and

accelerations Wav?
stics

Weather
data




Most direct approaches MARIN

CTV

* Validation framework allowing for comparison at:

description

Wave
stics

B) Sea-state level

Spectral correlation of .
V255e| motions and SDA of vessel motions

accelerations and accelerations

SDA = 4c = 4 /m,

Weather
data




Most direct approaches

CTV
description

e Validation framework allowing for comparison at:

Spectral correlation of .
Vgsse| motions and SDA of vessel motions

accelerations and accelerations HiEe
statistics

* Extract measurement data set for comparison:
* ~steady heading
* ~steady speed

* ~steady wave condition (also wind and

current) Weather

data
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Ship motion numerical assessment

RAO database calculated
for 6 CTV with PANSHIP

Assumptions:
Linear ship motions

Hull lines taken from
general arrangement

GM, draft received from
BMO

Radii of inertia estimated

No trim flap + trim flap with
fixed angles
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SDA pitch in Hs=1m @ Vs=25kn
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SDA roll in Hs=1m @ Vs=25kn
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SDA vertical acceleration in Hs=1m @ Vs=25kn MARIN|
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Heading [deg]

Heading [deqg]

Effect of trim flap angle on pitch
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Explore and analyze measurements prior to validation MARIN

* Wave data * Vessel motion data
* Wave buoy (not everywhere) BMO data
» Satellite (+model(s)): Copernicus
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Greater Gabbard MARIN

Greater Gabbard

. Wikimedia | € OpenStrestMap
Location of Greater Gabbard wind farm in the North

Sea
Country England
Location Inner Gabbard and The
Galloper banks
Morth Sea
Suffolk Coast
Coordinates & 51°52°48°N 1°56724°E
Status Cperational
Commission date 2012
Cwner(s) Scoftish and Southern
RWE Npower Renewables
Wind farm
Type Cifshore

Distance from shore 23 km (14 mi)
Power generation
Units operational 140

Make and model Siemens Wind Power:
SWT3.6-107

Mameplate capacity 504 MW
Annual net output 1,800 GW-h (2013)["

External links

Commons Related media on Commons
[edit on Wikidata]




Example of vessel measurement data MARIN
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Example of PSDs during transit

P.S.D. for: U=26.3 kn, Mu= 155.3 deg, Hs= 0.81 m, Tp=5.95 s
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MARIN

P.S.D. for: U= 26.3 kn, Mu= 155.3 deg, Hs= 0.81 m, Tp=5.95 s
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Example of PSDs during transit with simulation results

MARIN

P.S.D. for: U=26.3 kn, Mu= 155.3 deg, Hs= 0.81 m, Tp=5.95 s

jf? 0.2 P.S.D. for: U= 26.3 kn, Mu= 155.3 deg, Hs= 0.81m, Tp=5.95s
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PSD of vertical acceleration and PSD of roll

P.S.D. for: U= 26.3 kn, Mu= 155.3 deg, Hs= 0.81 m, Tp=5.95 s

MARIN

15 ! Observations:
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PSD of vertical acceleration and PSD of roll

P.S.D. for: U= 26.3 kn, Mu= 155.3 deg, Hs= 0.81 m, Tp=5.95 s
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First lessons, some hypotheses are
qguestionable:

JONSWAP for small waves
Linear assumption
Fidelity of CTV input data

Distinct wave components
Peaks are represented (global trend is

MARIN

Amplitude are different (wind wave)
Different m, (SDA)

What’s happening outside the main
wave components is disregarded
No LF response (or swell 2)
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Conclusions MARIN

A lot to learn from onboard measurements
Most precise definition as possible is recommended
Copernicus is a good start (more wave components in distinct directions)
Quantification of directional spreading is currently missing
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Conclusions MARIN

PANSHIP validation based on onboard measurements not easy

Hull lines, loading condition and trim flap angle not known and all have large
effect on linear ship motions

Local weather conditions not fully known (directional spreading, current, wind)
Uncertainty over heading, trim flap
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Conclusions MARIN

Driving factor for operability not precisely known but seakeeping tools
can help with:

Seasickness/fatigue of maintenance crew
MSI  within simulation tool boundaries
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