

EERA DEEPWIND 2020

"Are seakeeping simulations useful for the planning of offshore wind O&M?"

Sebastien GUEYDON, 16 January 2020

Outline

- Intro: SPOWTT
- Objective & methodology
- Ship motion numerical assessment
- Onboard measurements
- Summary

About SPOWTT

improving Safety and Productivity of Offshore Wind Technician Transits

SPOWTT: Project consortium

Project goals

Examples CTV

Types:
Monohull
Catamaran
Swath

CATAMARANS POPULAR AMONG CTVs

Outline

- Intro: SPOWTT
- Objective & methodology
- Onboard measurements
- Ship motion numerical assessment
- Summary

Are seakeeping simulations useful for the planning of O&M? MARIN

Objective: "Validation" of calculated vessel motion data against full scale motion measurement data.

Ship motion simulation code Real measurement on CTVs

- Operability of transit journeys is determined using a dB of motion SDAs
 SDA = Significant Double Amplitude
- SDA are calculated from motion RAOs
- RAOs are determined thanks to a ship motion simulation code: PANSHIP
- PANSHIP implements a semi-non-linear panel methods to predict hydrodynamic loads on fast ships
 - Accounting for lifting devices (foil/trim flap)

- Operability of transit journeys is determined using a dB of motion SDAs
 SDA = Significant Double Amplitude
- SDA are calculated from motion RAOs
- RAOs are determined thanks to a ship motion simulation code: PANSHIP
- PANSHIP implements a semi-non-linear panel methods to predict hydrodynamic loads on fast ships
 - Accounting for lifting devices (foil/trim flap)

- Operability of transit journeys is determined using a dB of motion SDAs
 SDA = Significant Double Amplitude
- SDA are calculated from motion RAOs
- RAOs are determined thanks to a ship motion simulation code: PANSHIP
- PANSHIP implements a semi-non-linear panel methods to predict hydrodynamic loads on fast ships
 - Accounting for lifting devices (foil/trim flap)

- Operability of transit journeys is determined using a dB of motion SDAs
 SDA = Significant Double Amplitude
- SDA are calculated from motion RAOs
- RAOs are determined thanks to a ship motion simulation code: PANSHIP
- PANSHIP implements a semi-non-linear panel methods to predict hydrodynamic loads on fast ships
 - Accounting for lifting devices (foil/trim flap)

Most direct approaches

MARIN

- Validation framework allowing for comparison at:
 - A) Frequency level

Spectral correlation of vessel motions and accelerations

Most direct approaches

MARIN

- Validation framework allowing for comparison at:
 - A) Frequency level

Spectral correlation of vessel motions and accelerations

B) Sea-state level

SDA of vessel motions and accelerations

$$SDA = 4\sigma = 4\sqrt{m_0}$$

Most direct approaches

- Validation framework allowing for comparison at:
 - - Frequency level B) Sea-state level

Spectral correlation of vessel motions and accelerations

SDA of vessel motions and accelerations

- **Extract measurement data set for comparison:**
 - ~ steady heading
 - ~ steady speed
 - ~ steady wave condition (also wind and current)

Outline

- Intro: SPOWTT
- Objective & methodology
- Ship motion numerical assessment
- Onboard measurements
- Summary

Ship motion numerical assessment

- RAO database calculated for 6 CTV with PANSHIP
- Assumptions:
 - Linear ship motions
 - Hull lines taken from general arrangement
 - GM, draft received from BMO
 - Radii of inertia estimated
 - No trim flap + trim flap with fixed angles

SDA pitch in Hs=1m @ Vs=25kn

SDA roll in Hs=1m @ Vs=25kn

SDA vertical acceleration in Hs=1m @ Vs=25kn

Effect of trim flap angle on pitch

Outline

- Intro: SPOWTT
- Objective & methodology
- Ship motion numerical assessment
- Onboard measurements
- Summary

Explore and analyze measurements prior to validation

- Wave data
 - Wave buoy (not everywhere)
 - Satellite (+model(s)): Copernicus
- Vessel motion data
 - BMO data

Greater Gabbard

Greater Gabbard

Example of vessel measurement data

Example of PSDs during transit

WAFO: http://www.maths.lth.se/matstat/wafo

Example of PSDs during transit with simulation results

WAFO: http://www.maths.lth.se/matstat/wafo

PSD of vertical acceleration and PSD of roll

P.S.D. for: U= 26.3 kn, Mu= 155.3 deg, Hs= 0.81 m, Tp= 5.95 s

Observations:

- Importance of distinct wave components
- Peaks are generally linked to a main WF component
- Lot's happening outside the main wave component:
 - LF response (roll)

PSD of vertical acceleration and PSD of roll

+:

- Distinct wave components
- Peaks are represented (global trend is there)

-:

- Amplitude are different (wind wave)
- Different m₀ (SDA)
- What's happening outside the main wave components is disregarded
 - No LF response (or swell 2)

First lessons, some hypotheses are questionable:

- JONSWAP for small waves
- Linear assumption
- Fidelity of CTV input data

Outline

- Intro: SPOWTT
- Objective & methodology
- Ship motion numerical assessment
- Onboard measurements
- Conclusions

- A lot to learn from onboard measurements
 - Most precise definition as possible is recommended
 - Copernicus is a good start (more wave components in distinct directions)
 - Quantification of directional spreading is currently missing
- PANSHIP validation based on onboard measurements not easy
 - Hull lines, loading condition and trim flap angle not known and all have large effect on linear ship motions
 - Local weather conditions not fully known (directional spreading, current, wind)
 - Uncertainty over heading, trim flap
- Driving factor for operability not precisely known but seakeeping tools can help with:
 - Seasickness/fatigue of maintenance crew
 - MSI within tool boundaries

- A lot to learn from onboard measurements
 - Most precise definition as possible is recommended
 - Copernicus is a good start (more wave components in distinct directions)
 - Quantification of directional spreading is currently missing
- PANSHIP validation based on onboard measurements not easy
 - Hull lines, loading condition and trim flap angle not known and all have large effect on linear ship motions
 - Local weather conditions not fully known (directional spreading, current, wind)
 - Uncertainty over heading, trim flap
- Driving factor for operability not precisely known but seakeeping tools can help with:
 - Seasickness/fatigue of maintenance crew
 - MSI within tool boundaries

- A lot to learn from onboard measurements
 - Most precise definition as possible is recommended
 - Copernicus is a good start (more wave components in distinct directions)
 - Quantification of directional spreading is currently missing
- PANSHIP validation based on onboard measurements not easy
 - Hull lines, loading condition and trim flap angle not known and all have large effect on linear ship motions
 - Local weather conditions not fully known (directional spreading, current, wind)
 - Uncertainty over heading, trim flap
- Driving factor for operability not precisely known but seakeeping tools can help with:
 - Seasickness/fatigue of maintenance crew
 - MSI within simulation tool boundaries

- A lot to learn from onboard measurements
 - Most precise definition as possible is recommended
 - Copernicus is a good start (more wave components in distinct directions)
 - Quantification of directional spreading is currently missing
- PANSHIP validation based on onboard measurements not easy
 - Hull lines, loading condition and trim flap angle not known and all have large effect on linear ship motions
 - Local weather conditions not fully known (directional spreading, current, wind)
 - Uncertainty over heading, trim flap
- Driving factor for operability not precisely known but seakeeping tools can help with:
 - Seasickness/fatigue of maintenance crew
 - MSI within simulation tool boundaries

THANK YOU!

Contributors:

- BMO team
- Gerben Spaans
- Rob Grin
- Christian Lena
- Ka Wing Lam
- Erik-Jan de Ridder
- Jorrit-Jan Serraris
- EU with Copernicus
- Lund University with WAFO

