

Dependence of Floating LiDAR Performance on External Parameters – Are existing onshore classification methods Applicable?

G. Wolken-Möhlmann, J. Gottschall

EERA Deepwind 2020, Trondheim, 15-17 Jan 2020

Outline

- Introduction
- < FLS verification vs classification
- Case Study: Fraunhofer IWES LiDAR Buoy
- Resume

Floating LiDAR Systems (FLS)

- Commercially available since 2010
- Several providers for systems or measurements, number growing
- FLS can replace offshore meteorological masts for site assessment, power curve measurements etc...

From: Gottschall et al: Floating lidar as an advanced offshore wind speed measurement technique, WIREs Energy and Environment, 2017 [1]

Applications

Wind resource assessment (WRA)

Power curve measurements

. . .

FLS verification vs classification

Verification

- For a distinct system
- For selected conditions
- short term measurement ~1 month

- For a FLS type
- Correlation WSP deviation and independent variable
- At least 3 months measurement

Fraunhofer IWES LiDAR Buoy

System

- Hull from light fire buoy, developed in 1980
- Power supply: 3 micro wind turbine, PV, back-up generator, batteries
- LiDAR: WindCube V2 or ZX 300 (ZephIR)
- Weight: ca. 3.5 t

Fraunhofer IWES LiDAR Buoy

System

- Hull from light fire buoy, developed in 1980
- Power supply: 3 micro wind turbine, PV, back-up generator batteries
- LiDAR: WindCube V2 or ZX 300 (ZephIR)
- Weight: ca. 3.5 t

Analysed Measurements (exceeding 6 months, 2016)

- LiDAR Buoy at FINO3 (Windcube)
- LiDAR Buoy at FINO1 (ZephIR)

Verification

Comparison of FLS wind speed and wind direction compared to reference

Verification

Comparison of FLS wind speed and wind direction compared to reference -> Key parameter (slope and R²) exceed Best Practice requirements!

Classification – Environmental Variables

Wind speed deviation (FLS-Reference) vs environmental variables (EV)

Meteorological variables (defined in IEC 64100-12-1)

- Wind speed
- Wind direction
- Wind shear
- Wind veer
- Temperature and temperature difference
- Air density

• ...

Classification – Environmental Variables

Wind speed deviation (FLS-Reference) vs environmental variables (EV)

Oceanographic variables

Meteorological variables (defined in IEC 64100-12-1)

- Wind speed
- Wind direction
- Wind shear
- Wind veer
- Temperature and temperature difference
- Air density

Wave height
Wave period
Water level
Currents
Tilting
Yawing
Heave
Translation

. . .

Platform motion variables

. . .

Wind shear (example)

4

Wind shear

FLS is sensitive for independent variable, if

- |Sensitivity| > 0.5
- $|Sensitivity \cdot R| > 0.1$

5

Wind shear

Significant Wave height Hs

Wind shear Sensitive!

Significant Wave height Hs Not sensitive!

Classification – Variable Sensitivity Results

LiDAR Quality Parameter and meteorological variables (selection)

Independant variable	std(Indepe ndant variable)	m (bin Fit)	Sensitivity m x std	R ²	Sensitivity x R	Sensitive
[-]	[unit	[% unit	[%]	[-]	[%]	
	variable]	variable]	[/0]		[/0]	1 01
CNR signal quality	5.90	-0.11	-0.65	0.01	-0.06	yes
Wind shear exponent	0.11	-9.18	-0.97	0.12	-0.33	yes
Wind veer	0.13	-9.66	-1.21	0.04	-0.23	yes
Wind speed	3.16	-0.20	-0.62	0.06	-0.15	yes
Turbulence intensity Ti	2.27	0.36	0.81	0.05	0.18	yes
Temperature gradient	0.01	-104.26	-1.10	0.01	-0.13	yes

Are the variables independent, correlations?

Classification – Variable Sensitivity Results

LiDAR Quality Parameter and meteorological variables (selection)

Independant variable	std(Indepe ndant variable)	m (bin Fit)	Sensitivity m x std	R ²	Sensitivity x R	Sensitive	Considering shear
[-]	[unit variable]	[% unit variable]	[%]	[-]	[%]		
CNR signal quality	5.90	-0.11	-0.65	0.01	-0.06	yes	no
Wind shear exponent	0.11	-9.18	-0.97	0.12	-0.33	yes	no
Wind veer	0.13	-9.66	-1.21	0.04	-0.23	yes	yes
Wind speed	3.16	-0.20	-0.62	0.06	-0.15	yes	no
Turbulence intensity Ti	2.27	0.36	0.81	0.05	0.18	yes	no
Temperature gradient	0.01	-104.26	-1.10	0.01	-0.13	yes	no

- > CNR, shear, wind speed, Ti and the temperature gradient correlate
- > Veer is an independent variable!
 - * See Barker Et al. [6]

*

Classification – Variable Sensitivity Results

Oceanographic variables and motion variable (selection)

Independant variable	std(Indepe ndant variable)	m (bin Fit)	Sensitivity m x std	R2	Sensitivity x R	Sensitive
[-]	[unit variable]	[% unit variable]	[%]	[-]	[%]	
Significant wave height (buoy)	0.721	-0.140	-0.101	0.000	-0.001	no
Peak period Tp (Buoy)	2.289	0.026	0.059	0.000	0.001	no
Current	0.096	-1.382	-0.133	0.002	-0.006	no
Heave range	0.570	-0.219	-0.125	0.000	-0.002	no
Tilt Range	3.811	0.027	0.105	0.000	0.001	no
Yaw increment range	8.559	-0.008	-0.069	0.002	-0.003	no
Static tilt	0.473	-0.387	-0.183	0.002	-0.008	no

- No sensitivities for oceanographic or platform motion variables!

Classification – Final classification

Classification results for FINO1 campaign

-> Most uncertainty comes from reference measurement uncertainty

Classification – Results

For both FLS systems, no sensitivities to oceanographic or buoy motion variables could be identified!

FLS (Windcube)

FLS (ZX/ZephIR) @100m

Independant variable	Sensitivity m x std	Sensitivit y x R	Sensitive
[-]	[%]	[%]	
Significant wave height (buoy)	-0.101	-0.001	no
Peak period Tp (Buoy)	0.059	0.001	no
Current	-0.133	-0.006	no
Heave range	-0.125	-0.002	no
Tilt Range	0.105	0.001	no
Yaw increment range	-0.069	-0.003	no
Static tilt	-0.183	-0.008	no

Independant variable m x sto		Sensitive
[-] [%]	[%]	
Significant wave height -0.063	-0.001	no
Peak period Tp (Buoy) -0.191	-0.007	no
Fm02 (radar) 0.013	0.000	no
Waterlevel -0.069	0.000	no
Heave range -0.118	-0.002	no
Filt Range 0.078	0.000	no
Yaw increment range -0.054	-0.001	no
Static tilt 0.075	0.002	no

Classification – Shortcomings

- Which variables are important do we miss the important ones?
- Bin-fitting process is not necessarily robust
- Use of motion instead of oceanographic variables for system with minor design changes?

Classification – Shortcomings

- Which variables are important do we miss the important ones?
- Bin-fitting process is not necessarily robust
- Use of motion instead of oceanographic variables for system with minor design changes?

Resume

- Verification and classification are important for the commercial acceptance of FLS
- Both IWES FLS using Windcube or ZX/ZephIR show no sensitivities to motions or oceanographic variables
- Method of classification (according to IEC) must be adapted for offshore, due to more variables... which variables are important for a measurement sensitivity forecast?

Acknowledgements

The presented work was done in cooperation with Stiftungslehrstuhl Windenergie SWE Stuttgart within the research project MALIBU, funded by the German Federal Ministry For Economics Affairs and Energy (BMWi) under Grant number 0324197B, as well as the support of Project Management Jülich (PTJ)

Fraunhofer IWES is funded by:

Federal Republic of Germany

Federal Ministry for Economic Affairs and Energy

Federal Ministry of Education and Research

European Regional Development Fund (ERDF):

Federal State of Bremen

- Senator of Civil Engineering, Environment and Transportation
- Senator of Economy, Labor and Ports
- Senator of Science, Health and Consumer Protection
- Sremerhavener Gesellschaft f
 ür Investitionsf
 örderung und Stadtentwicklung mbH

Federal State of Lower Saxony

Free and Hanseatic City of Hamburg

© 2019 Fraunhofer IWFS

Bundesministerium für Wirtschaft und Energie

Europäische Union Investition in Bremens Zukunft Europäischer Fonds für regionale Entwicklung

Niedersachsen

IWES

Thanks a lot for your attention!

References

 Gottschall Et al.: Floating lidar as an advanced offshore wind speed measurement technique: current technology status and gap analysis in regard to full maturity, WIREs Energy Environment 2017, e250. doi: 10.1002/wene.250
 Carbon Trust Offshore Wind Accelerator Roadmap for the Commercial Acceptance of Floating LiDAR Technology, Version 1.0, November 2013.

[3] Carbon Trust Offshore Wind Accelerator Roadmap for the Commercial Acceptance of Floating LiDAR Technology, Version 2.0, October 2018.

[4] IEA Wind, Expert Group Report on Recommended Practices, 18. Floating LiDAR Systems, First Edition 2017. O. Bischoff, I. Würth, J. Gottschall, B. Gribben, J. Hughes, D. Stein, H. Verhoef

[5] IEC 61400-12-1:2017 Wind energy generation systems -Part 12-1: Power performance measurements of electricity producing wind turbines, Annex L: The application of remote sensing technology

[6] Barker et. Al. Correlation effects in the field classification of ground based remote sensors, Conference paper, EWEA 2014, Barcelona, Spain

